Progressions, Related Inequalities and Series

Choose the most appropriate option (a, b, c or d).

Q 1.	1. If a_1 , a_2 , a_3 , are in AP then a_p , a_q , a_r are in AP if p , q , r are in				
	(a) AP	(b) GP	(c) HP	(d) none of these	
Q 2.	Let t_r denote the rth term of an AP. If $t_m = \frac{1}{n}$ and $t_n = \frac{1}{m}$ then t_{mn} equals				
	(a) 1/mn	(b) $\frac{1}{m} + \frac{1}{n}$	(c) 1	(d) 0	
Q 3.	If p, q, r, $s \in N$ and they a GP are in	y are four consecutive te	erms of an AP then the pt	ch, qth, rth, sth terms of	
	(a) AP	(b) GP	(c) HP	(d) none of these	
Q 4.	If in a progression a ₁ , a ₂ the progression are in	₂ , a ₃ ,, etc., (a _r – a _{r+1}) be	ars a constant ratio with	a_{r} . a_{r+1} then the terms of	
	(a) AP	(b) GP	(c) HP	(d) none of these	
Q 5.	If $\frac{a_2 a_3}{a_1 a_4} = \frac{a_2 + a_3}{a_1 + a_4} = 3 \left(\frac{a_1}{a_1} \right)$	$\left(\frac{a_2 - a_3}{a_1 - a_4}\right)$ then a_1 , a_2 , a_3 , a_4	are in		
	(a) AP	(b) GP	(c) HP	(d) none of these	
Q 6.	Let x, y, z be three positerms (not necessarily of		progression in which $\sqrt{2}$	$\overline{x}, \sqrt{y}, \sqrt{z}$ can be three	
	(a) AP	(b) GP	(c) HP	(d) none of these	
Q 7.	Let $f(x) = 2x + 1$. Then to f(2x), $f(4x)$ are in GP I s	he number of real value:	s of x for which the three	unequal number f(x),	
	(a) 1	(b) 2	(c) 0	(d) none of these	
Q 8.	If $a_r > 0$, $r \in N$ and a_1 , a	$_{2}$, a_{3} ,, a_{2n} are in AP th	nen		
	$\frac{a_1 + a_{2n}}{\sqrt{a_1} + \sqrt{a_2}} + \frac{a_2}{\sqrt{a_2}}$	$\frac{a_2 + a_{2n-1}}{a_2 - \sqrt{a_3}} + \frac{a_3 + a_{2n-2}}{\sqrt{a_3} + \sqrt{a_4}} + \dots$	+ $\frac{a_n + a_{n+1}}{\sqrt{a_n} + \sqrt{a_{n+1}}}$		
	is equal to				

	(a) n – 1	(b) $\frac{n(a_1 + a_{2n})}{\sqrt{a_1} + \sqrt{a_{n+1}}}$	(c) $\frac{n-1}{\sqrt{a_1} + \sqrt{a_{n+1}}}$	(d) none of these
Q 9.	If a ₁ , a ₂ , a ₃ ,, a _{2n+1} ar	e in AP then		
	$\frac{a_{2n+1} - a_1}{a_{2n+1} + a_1} + \frac{a_{2n}}{a_{2n}}$	$\frac{-a_2}{+a_2} + \dots + \frac{a_{n+2} - a_n}{a_{n+2} + a_n}$		
	is equal to			
	(a) $\frac{n(n+1)}{2} \cdot \frac{a_2 - a_1}{a_{n+1}}$	(b) $\frac{n(n+1)}{2}$	(c) $(n+1)(a_2-a_1)$	(d) none of these
Q 10.	Let a ₁ , a ₂ , a ₃ , be in Al	P and a_p , a_q , a_r be in GP. $^{-1}$	Then a_q : a_p is equal to	
	(a) $\frac{r-p}{q-p}$	(b) $\frac{q-p}{r-q}$	(c) $\frac{r-q}{q-p}$	(d) none of these
Q 11.	If a, b, c are in GP then	a + b, 2b, b + c are in		
	(a) AP	(b) GP	(c) HP	(d) none of these
Q 12.	If a,b,c,d are nonzero re	eal numbers such that		
	$(a^2 + b^2 + c^2)(b^2)$	$+ c^2 + d^2 \le (ab + bc + cd)$)2	
	Then a, b, c, d are in			
	(a) AP	(b) GP	(c) HP	(d) none of these
Q 13.	If $4a^2 + 9b^2 + 16c^2 = 2(3)$	ab + 6bc + 4ca), where a	, b, c are nonzero numb	ers, then a, b, c are in
	(a) AP	(b) GP	(c) HP	(d) none of these
Q 14.	If a, b, c are in AP then	$\frac{a}{bc}$, $\frac{1}{c}$, $\frac{2}{b}$ are in		
	(a) AP	(b) GP	(c) HP	(d) none of these
Q 15.	If in an AP, $t_1 = log_{10} a$,	$t_{n+1} = log_{10} b and t_{2n+1} = log_{10}$	og ₁₀ c then a, b, c are in	
	(a) AP	(b) GP	(c) HP	(d) none of these
Q 16.	If n!, 3 × n! and (n + 1)!	are in GP then $n!$, $5 \times n!$	and (n + 1)! are in	
	(a) AP	(b) GP	(c) HP	(d) none of these
Q 17.	In an AP, the pth term	is q and the (p + q)th ter	m is 0. Then the qth tern	n is

	(a) –p	(b) p	(c) p + q	(d) p – q	
Q 18.	18. In a sequence of $(4n + 1)$ terms the first $(2n + 1)$ terms are in AP whose common difference and the last $(2n + 1)$ terms are in GP whose common ratio is 0.5. If the middle terms of the A and GP are equal then the middle term of the sequence is				
	(a) $\frac{n.2^{n+1}}{2^n-1}$	(b) $\frac{n.2^{n+1}}{2^{2n}-1}$	(c) n . 2 ⁿ	(d) none of these	
Q 19.	If $x^2 + 9y^2 + 25z^2 = xyz$	$\left(\frac{15}{x} + \frac{5}{y} + \frac{3}{z}\right)$ then x, y, z a	are in		
	(a) AP	(b) GP	(c) HP	(d) none of these	
Q 20.	If a, b, c, d and p are di	stinct real numbers such	that		
	$(a^2 + b^2 + c^2)p^2$	$-2(ab + bc + cd)p + (b^2 +$	$c^2+d^2)\leq 0$		
	then a, b, c, d are in				
	(a) AP	(b) GP	(c) HP	(d) none of these	
Q 21.	 The largest term common to the sequences 1, 11, 21, 31, to 100 terms and 31, 36, 41, 46, to 100 terms is 				
	(a) 381	(b) 471	(c) 281	(d) none of these	
Q 22.		convex polygon are in A $2\pi/3$ then the number of	NP, the common difference of sides is	ce being 5°. If the	
	(a) 9	(b) 16	(c) 7	(d) none of these	
Q 23.	The minimum number	of terms of 1 + 3 + 5 + 7	+ that add up to a n	umber exceeding 1357 is	
	(a) 15	(b) 37	(c) 35	(d) 17	
Q 24.	In the value of 100! the	e number of zeros at the	end is		
	(a) 11	(b) 22	(c) 23	(d) 24	
Q 25.	The sum of all the prop	er divisors of 9900 is			
	(a) 33851	(b) 23952	(c) 23951	(d) none of these	
Q 26.	The sum of all odd prop	per divisors of 360 is			
	(a) 77	(b) 78	(c) 81	(d) none of these	

Q 27.	In the sequence 1, 2, 2, 3, 3, 4, 4, 4, 4,, where n consecutive terms have the value n, the 150 th term is			
	(a) 17	(b) 16	(c) 18	(d) none of these
Q 28.	In the sequence 1, 2, 2 value n, the 1025 th te	2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	8, 8, 8,, where n cons	ecutive terms have the
	(a) 2 ⁹	(b) 2 ¹⁰	(c) 2 ¹¹	(d) 2 ⁸
Q 29.	Let {t _n } be a sequence	of integers in GP in whi	ch $t_4: t_6 = 1: 4$ and $t_2 + t_5$	$_{5}$ = 216. Then t_{1} is
	(a) 12	(b) 14	(c) 16	(d) none of these
Q 30.	If $\log\left(\frac{5c}{a}\right)$, $\log\left(\frac{3b}{5c}\right)$ and $\log\left(\frac{a}{3b}\right)$ are in AP, where a, b, c are in GP, then a, b, c are the lengths of sides of			
	(a) an isosceles triang	le	(b) an equilateral tria	ngle
	(c) a scalene triangle		(d) none of these	
Q 31.	31. Let S be the sum, P be the product and R be the sum of the reciprocals of n terms of a GP. Th P^2R^n : S^n is equal to			of n terms of a GP. Then
	(a) 1:1		(b) (common ratio) ⁿ :	1
	(c) (first term) ² : (com	mon ratio) ⁿ	(d) none of these	
Q 32.	If the pth, qth and rth	terms of an AP are in GI	then the common ratio	of the GP is
	(a) $\frac{p+q}{r+q}$	(b) $\frac{r-q}{q-p}$	(c) $\frac{p-r}{p-q}$	(d) none of these
Q 33.	The number of terms 10 + to 100 term		eries 1 + 2 + 4 + 8 + to	0 100 terms and 1 + 4 + 7 +
	(a) 6	(b) 4	(c) 5	(d) none of these
Q 34.	The 10 th common terr	n between the series 3 +	- 7 + 11 + and 1 + 6 + 1	11 + is
	(a) 191	(b) 193	(c) 211	(d) none of these
Q 35.	Three consecutive ter	ms of a progression are	30, 24, 20. The next tern	n of the progression is
	(a) 18	(b) $17\frac{1}{7}$	(c) 16	(d) none of these

Q 36.	If three numbers are in GP then the numbers obtained by adding the middle number to each of the three numbers are in			
	(a) AP	(b) GP	(c) HP	(d) none of these
Q 37.	If a_1 , a_2 , a_3 are in AP, a_2	, a_3 , a_4 are in GP and a_3 , a_4	a₄, a₅ are in HP then a₁, a	ı₃, a₅ are in
	(a) AP	(b) GP	(c) HP	(d) none of these
Q 38.	If a, b, c, d are four nun then	nbers such that the first	three are in AP while the	e last three are in HP
	(a) bc = ad	(b) ac = bd	(c) ab = cd	(d) none of these
Q 39.	If the first two terms of is the	f an HP be 2/5 and 12/23	3 then the largest positiv	e term of the progression
	(a) 6 th term	(b) 7 th term	(c) 5 th term	(d) 8 th term
Q 40.	10. If x, 2y, 3z are in AP, where the distinct numbers x, y, z are in GP, then the common ratio of GP is			
	(a) 3	(b) $\frac{1}{3}$	(c) 2	(d) $\frac{1}{2}$
Q 41.	If $x > 1$, $y > 1$, $z > 1$ are t	three numbers in GP the	n	
	$\frac{1}{1+\ln x}, \frac{1}{1+\ln y},$	1 1+lnz		
	are in			
	(a) AP	(b) HP	(c) GP	(d) none of these
Q 42.		b are in AP, a, b_1 , b_2 , b_3 , ositive, then the equatio		$c_1, c_2, c_3,, c_{2n-1}, b$ are ts roots
	(a) real and unequal	(b) real and equal	(c) imaginary	(d) none of these
Q 43.	If a, x, b are in AP, a, y,	b are in GP and a, z, b ar	Te in HP such that $x = 9z$	and a > 0, b > 0 then
	(a) y = 3z	(b) x = 3 y	(c) $2y = x + z$	(d) none of these
Q 44.	If three numbers are in from each of them are	HP then the number ob in	tained by subtracting ha	lf of the middle number
	(a) AP	(b) GP	(c) HP	(d) none of these

Q 45.	a, b, c, d, e are five numbers in which the first three are in AP and the last three are in HP. If the three numbers in the middle are in GP then the numbers in the odd places are in			
	(a) AP	(b) GP	(c) HP	(d) none of these
Q 46.	Let a ₁ , a ₂ , a ₃ ,,a ₁₀ be a ₄ h ₇ is	e in AP and h_1 , h_2 , h_3 ,	, h_{10} be in HP. If $a_1 = h_1 =$	2 and $a_{10} = h_{10} = 3$ then
	(a) 2	(b) 3	(c) 5	(d) 6
Q 47.	If in an AP, $S_n = p$. n^2 an equal to	$d S_m = p.m^2$, where $S_r de$	notes the sum of r term	s of the AP, then S _p is
	(a) $\frac{1}{2}p^3$	(b) mnp	(c) p ³	(d) $(m + n)p^2$
Q 48.	If S _r denotes the sum o	f the $\frac{S_{3r} - S_{r-1}}{S_{2r} - S_{2r-1}}$ is equal	to	
	(a) 2r – 1	(b) 2r + 1	(c) 4r + 1	(d) 2r + 3
Q 49.	S_r denotes the sum of t	he first r terms of a GP.	Then S_n , $S_{2n} - S_{3n} - S_{2n}$ are	e in
	(a) AP	(b) GP	(c) HP	(d) none of these
Q 50.	If $(1-p)(1+3x+9x^2+1)$	$27x^3 + 81x^4 + 243x^5) = 1 -$	$-p^6$, p \neq 1 then the value	e of $\frac{p}{x}$ is
	(a) $\frac{1}{3}$ `	(b) 3	(c) $\frac{1}{2}$	(d) 2
Q 51.	If the sum of series 1+	$\frac{2}{x} + \frac{4}{x^2} + \frac{8}{x^3} + \dots to \infty$ is	a finite number then	
	(a) x < 2	(b) $x > \frac{1}{2}$	(c) x > -2	(d) $x < -2$ or $x > 2$
Q 52.	Let S _n denote the sum of	of the first n terms of an	AP. If $S_{2n} = 3S_n$ then S_{3n} :	S _n is equal to
	(a) 4	(b) 6	(c) 8	(d) 10
Q 53.	In a GP of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the GP is			
	(a) $\frac{-4}{5}$	(b) $\frac{1}{5}$	(c) 4	(d) none of these
Q 54.	In an AP, $S_p = q$, $S_q = p$ and S_r denote the sum of the first r terms. Then S_{p+q} is equal to			

		•			
	$(1-x)(1-2x)(1-2^2. x)(1-2^3. x)(1-2^{15}. x)$				
	is equal to				
	(a) 2 ¹⁰⁵ - 2 ¹²¹	(b) $2^{121} - 2^{105}$	(c) 2 ¹²⁰ - 2 ¹⁰⁴	(d) none of these	
Q 56.	The coefficient of x ⁴⁹ in	the product $(x-1)(x-3)$	3) (x – 99) is		
	(a) -99 ²	(b) 1	(c) -2 500	(d) none of these	
Q 57.	If a, b, c are in AP then	$a + \frac{1}{bc}, b + \frac{1}{ca}, c + \frac{1}{ab}$ are	e in		
	(a) AP	(b) GP	(c) HP	(d) none of these	
Q 58.				eased by 1, the GM of the lof the given numbers is	
	(a) $\frac{3}{2}$	(b) $\frac{2}{3}$	(c) $\frac{1}{2}$	(d) none of these	
Q 59.	Let a, b are two positiv	e numbers, where a > b	and $4 \times GM = 5 \times HM$ for	the numbers. Then a is	
	(a) 4b	(b) $\frac{1}{4}$ b	(c) 2b	(d) b	
Q 60.	then	are in AP and a, g_1 , g_2 , g_3 , a_{2n-1} a_{2n-1} $a_n + a_{n+1}$ $g_n g_{n+1}$	g _{2n} , b are in GP and h	is the HM of a and b	
	is equal to				
	(a) $\frac{2n}{h}$	(b) 2nh	(c) nh	(d) $\frac{n}{h}$	
Q 61.		, a_n be real numbers su $_n$ has the value A where	ch that $ a_i = a_{i-1} + 1 $ for	or all i then the AM of the	
	(a) $A < -\frac{1}{2}$	(b) A < -1	(c) $A \ge -\frac{1}{2}$	(d) A = $-\frac{1}{2}$	

Let there be a GP whose first term is a and the common ratio is r. If A and H are the arithmetic mean and the harmonic mean respectively for the first n terms of the GP, A . H is equal to

(c) p + q

(d) pq

(b) -(p + q)

(a) 0

Q 62.

Q 55. The coefficient of x^{15} in the product

	(a) a ² r ⁿ⁻¹	(b) ar ⁿ	(c) a ² r ⁿ	(d) none of these	
Q 63.	If the first and the $(2n-1)$ th terms of an AP, a GP and an HP are equal and their nth terms are a b and c respectively then				
	(a) a = b = c	(b) $a \ge b \ge c$	(c) a + c = b	(d) ac $-b^2 = 0$	
Q 64.	$\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ is the HM be	tween a and b if n is			
	(a) 0	(b) $\frac{1}{2}$	(c) $-\frac{1}{2}$	(d) 1	
Q 65.	If the harmonic mean b	petween P and Q be H th	en $H\left(\frac{1}{P} + \frac{1}{Q}\right)$ is equal to		
	(a) 2	(b) $\frac{PQ}{P+Q}$	(c) $\frac{P+Q}{PQ}$	(d) $\frac{1}{2}$	
Q 66.	Let x be the AM and y,	z be two GMs between	two positive numbers. Th	nen $\frac{y^3 + z^3}{xyz}$ is equal to	
	(a) 1	(b) 2	(c) $\frac{1}{2}$	(d) none of these	
Q 67.	If HM : GM = 4 : 5 for t	wo positive numbers the	n the ratio of the number	ers is	
	(a) 4:1	(b) 3:2	(c) 3:4	(d) 2:3	
Q 68.	In a GP of alternately p Then the common ratio		ms, any term is the AM o	f the next two terms.	
	(a) -1	(b) -3	(c) -2	(d) $-\frac{1}{2}$	
Q 69.		p, p' are the AM and GM ly between b and c, ther		and b, while q, q' are the	
	(a) $p^2 + q^2 = p'^2 + q'^2$	(b) pq = p'q'	(c) $p^2 - q^2 = p^{12} - q^{12}$	(d) none of these	
Q 70.	If $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ then the	minimum value of cos ³ ($\theta + \sec^3 \theta$ is		
	(a) 1	(b) 2	(c) 0	(d) none of these	
Q 71.	If a > 1, b > 1 then the	minimum value of log₅ a	+ logab I s		
	(a) 0	(b) 1	(c) 2	(d) none of these	

Q 72.	The minimum value of $4^x + 4^{1-x}$, $x \in R$, is			
	(a) 2	(b) 4	(c) 1	(d) none of these
Q 73.	If $x = \log_5 3 + \log_7 5 + \log_7 5$	g ₉ 7 then		
	(a) $x \ge \frac{3}{2}$	(b) $x \ge \frac{1}{\sqrt[3]{2}}$	(c) $x \ge \frac{3}{\sqrt[3]{2}}$	(d) none of these
Q 74.	If $a_n > 1$ for all $n \in N$ th	en		
	$\log_{a_2} a_1 + \log_{a_3} a_1$	$a_2 + \dots + \log_{a_n} a_{n-1} + \log_{a_n} a_{n-1}$	J _{a,} a _n	
	has the minimum value			
	(a) 1	(b) 2	(c) 0	(d) none of these
Q 75.	The product of n positi	ve numbers is 1. Their su	ım is	
	(a) a positive integer		(b) divisible by n	
	(c) equal to $n + \frac{1}{n}$		(d) greater than or equ	al to n
Q 76.	If x, y, z are three real r	numbers of the same sign	then the value of $\frac{x}{y} + \frac{y}{z}$	$\frac{z}{x} + \frac{z}{x}$ lies in the interval
	(a) [2, +∞)	(b) [3, +∞)	(c) (3, +∞)	(d) (-∞, 3)
Q 77.	The least value of 2log	$_{00}$ a $-\log_a 0.0001$, a > 1 i	S	
	(a) 2	(b) 3	(c) 4	(d) none of these
Q 78.	If $0 < x < \pi/2$ then the r	ninimum value of (sin x -	+ cos x + cosec 2x) ³ is	
	(a) 27	(b) 13.5	(c) 6.75	(d) none of these
Q 79.	If x, y, z are positive the	en the minimum value of	F	
	$x^{logy-logz}+y^{logz-l}$	$^{\text{ogx}} + Z^{\text{logx-logy}}$ is		
	(a) 3	(b) 1	(c) 9	(d) 16
Q 80.	a, b, c are three positiv	e numbers and abc ² has	the greatest value $\frac{1}{64}$. The stress of the stress	Γhen
	(a) $a = b = \frac{1}{2}, c = \frac{1}{4}$	(b) $a = b = \frac{1}{4}, c = \frac{1}{2}$	(c) $a = b = c = \frac{1}{3}$	(d) none of these

If a > 0, b > 0, c > 0 and the minimum value of $a(b^2 + c^2) + b(c^2 + a^2) + c(a^2 + b^2)$ is λabc then λ is (a) 2 (b) 1 (c) 6(d)3Q 82. The value of $\sum_{n=1}^{10} \int_{0}^{n} x dx$ is (a) an even integer (b) an odd integer (c) a rational number (d) an irrational number Q 83. The sum of $0.2 + 0.004 + 0.00006 + 0.0000008 + \dots$ to ∞ is (c) $\frac{1000}{9801}$ (a) $\frac{200}{891}$ (b) $\frac{2000}{9801}$ (d) none of these If (2n + r)r, $n \in N$, $r \in N$ is expressed as the sum of k consecutive odd natural numbers then k is Q 84. equal to (c) r + 1(a) r (d) n + 1(b) n Q 85. $\sum_{r=1}^{n} r^2 - \sum_{r=1}^{n} \sum_{r=1}^{m} r$ is equal to (b) $\frac{1}{2} \left(\sum_{r=1}^{n} r^2 + \sum_{r=1}^{n} r \right)$ (c) $\frac{1}{2} \left(\sum_{r=1}^{n} r^2 - \sum_{r=1}^{n} r \right)$ (d) none of these (a) 0 Q 86. If $(1 + x)(1 + x^2)(1 + x^4)...(1 + x^{128}) = \sum_{r=0}^{n} x^r$ then n is (b) 127 (a) 255 (c) 63 (d) none of these Q 87. The value of $\sum_{n=1}^{m} \log \frac{a^{2n-1}}{b^{m-1}}$ (a \neq 0, 1; b \neq 0, 1) is (a) $mlog \frac{a^{2m}}{b^{m-1}}$ (b) $log \frac{a^{2m}}{b^{m-1}}$ (c) $\frac{m}{2} log \frac{a^{2m}}{b^{2m-2}}$ (d) $\frac{m}{2} log \frac{a^{2m}}{b^{m+1}}$ Q88. The sum of the products of the ten numbers ± 1 , ± 2 , ± 3 , ± 4 , ± 5 taking two at a time is (a) 165 (b) -55 (c)55(d) none of these The sum of the series $\frac{1}{\log_2 4} + \frac{1}{\log_4 4} + \frac{1}{\log_8 4} + \dots + \frac{1}{\log_2 6}$ is

(a)
$$\frac{n(n+1)}{2}$$

(a)
$$\frac{n(n+1)}{2}$$
 (b) $\frac{n(n+1)(2n+1)}{12}$ (c) $\frac{1}{n(n+1)}$

(c)
$$\frac{1}{n(n+1)}$$

(d) none of these

Q 90. If $\sum_{n=1}^{n} n_n \frac{\sqrt{10}}{3} \cdot \sum_{n=1}^{n} n^2 \cdot \sum_{n=1}^{n} n^3$ are in GP then the value of n is

(a) 2

(b) 3

(c) 4

(d) nonexistent

Q 91. The value of $\sum_{r=1}^{n} \left\{ (2r-1)a + \frac{1}{b^r} \right\}$ is equal to

(a)
$$an^2 + \frac{b^{n-1} - 1}{b^{n-1}(b-1)}$$
 (b) $an^2 + \frac{b^n - 1}{b^n(b-1)}$ (c) $an^3 + \frac{b^{n-1} - 1}{b^n(n-1)}$

(d) none of these

Q 92. If $s_n = \sum_{n=1}^{n} \frac{1 + 2 + 2^2 + ... \text{to n terms}}{2^n}$ the s_n is equal to

(b)
$$1-\frac{1}{2^n}$$

(c)
$$n-1+\frac{1}{2^n}$$

Let S_n denote the sum of the cubes of the first n natural numbers s_n denote the sum of the first n natural numbers. Then $\sum_{r=1}^{n} \frac{S_r}{S_r}$ is equal to

(a)
$$\frac{n(n+1)(n+2)}{6}$$
 (b) $\frac{n(n+1)}{2}$ (c) $\frac{n^2+3n+2}{6}$

(b)
$$\frac{n(n+1)}{2}$$

(c)
$$\frac{n^2 + 3n + 2}{6}$$

(d) none of these

Q 94. It is known that $\sum_{r=1}^{\infty} \frac{1}{(2r-1)^2} = \frac{\pi^2}{8}$. Then $\sum_{r=1}^{\infty} \frac{1}{r^2}$ is equal to

(a)
$$\frac{\pi^2}{24}$$

(a)
$$\frac{\pi^2}{24}$$
 (b) $\frac{\pi^2}{3}$

(c)
$$\frac{\pi^2}{6}$$

(d) none of these

Q 95. It is given that $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots$ to $\infty = \frac{\pi^4}{90}$. Then $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots$ to ∞ is equal to

(a)
$$\frac{\pi^4}{96}$$

(b)
$$\frac{\pi^4}{45}$$

(b)
$$\frac{\pi^4}{45}$$
 (c) $\frac{89\pi^4}{90}$

(d) none of these

Q 96. If in a series $t_n = \frac{n}{(n+1)!}$ then $\sum_{n=1}^{20} t_n$ is equal to

(a)
$$\frac{20!-1}{20!}$$

(b)
$$\frac{21!-1}{21!}$$

(b)
$$\frac{21!-1}{21!}$$
 (c) $\frac{1}{2(n-1)!}$

(d) none of these

If t_n denotes the nth term of the series 2 + 3 + 6 + 11 + 18 + ... Then t_{50} is

(a)
$$49^2 - 1$$
 (b) $49^2 + 2$

(c)
$$50^2 + 1$$

(d)
$$49^2 + 2$$

 $2^{1/4} \cdot 4^{1/8} \cdot 8^{1/16} \dots$ to ∞ is equal to Q 98.

(c)
$$\frac{3}{2}$$

(d) none of these

Q 99. The sum of n terms of the series

$$1^2 + 2.2^2 + 3^2 + 2.4^2 + 5^2 + 2.6^2 + \dots$$

is $\frac{n(n+1)^2}{2}$ when n is even. When n is odd, the sum is

(a)
$$\frac{n^2(n+1)}{2}$$

(b)
$$\frac{n^2(n-1)}{2}$$

(a)
$$\frac{n^2(n+1)}{2}$$
 (b) $\frac{n^2(n-1)}{2}$ (c) $2(n+1)^2$. (2n + 1) (d) none of these

Q 100. If n is an odd integer greater than or equal to 1 then the value of $n^3 - (n-1)^3 + (n-2)^3 - \dots + (-1)^3 + (n-1)^3 +$ 1)ⁿ⁻¹ . 1³ is

(a)
$$\frac{(n+1)^2 \cdot (2n-1)^2}{4}$$

(b)
$$\frac{(n-1)^2.(2n-1)^2}{4}$$

(a)
$$\frac{(n+1)^2.(2n-1)}{4}$$
 (b) $\frac{(n-1)^2.(2n-1)}{4}$ (c) $\frac{(n+1)^2.(2n+1)}{4}$

(d) none of these

Q 101. Observe that

$$1^3 = 1$$
, $2^3 = 3 + 5$, $3^3 = 7 + 9 + 11$, $4^3 = 13 + 15 + 17 + 19$.

Then n³ as a similar series is

$$\left(a\right) \left[2\left\{ \frac{n(n-1)}{2} + 1\right\} - 1 \right] + \left[2\left\{ \frac{(n+1)n}{2} + 1\right\} + 1 \right] + \dots + \left[2\left\{ \frac{(n+1)n}{2} + 1\right\} + 2n - 3 \right]$$

(b)
$$(n^2 + n + 1) + (n^2 + n + 3) + (n^2 + n + 5) + \dots + (n^2 + 3n - 1)$$

(c)
$$(n^2 - n + 1) + (n^2 - n + 3) + (n^2 - n + 5) + \dots + (n^2 + n - 1)$$

(d) none of these

Q 102. Let $t_r = 2^{r/2} + 2^{-r/2}$. Then $\sum_{r=1}^{10} t_r^2$ is equal to

(a)
$$\frac{2^{21}-1}{2^{10}}+20$$
 (b) $\frac{2^{21}-1}{2^{10}}+19$ (c) $\frac{2^{21}-1}{2^{20}}-1$

(b)
$$\frac{2^{21}-1}{2^{10}}+19$$

(c)
$$\frac{2^{21}-1}{2^{20}}-1$$

(d) none of these

Q 103. Let $S_k = \lim_{n \to \infty} \sum_{i=0}^{n} \frac{1}{(k+1)^i}$. Then $\sum_{k=1}^{n} kS_k$ equals

(a)
$$\frac{n(n+1)}{2}$$
 (b) $\frac{n(n-1)}{2}$ (c) $\frac{n(n+2)}{2}$

(b)
$$\frac{n(n-1)}{2}$$

(c)
$$\frac{n(n+2)}{2}$$

(d)
$$\frac{n(n+3)}{2}$$

Q 104.	Let $t_n = n.(n!)$. then $\sum_{n=1}^{15} t_n$	_n is equal to		
	(a) 15! – 1	(b) 15! + 1	(c) 16! – 1	(d) none of these
Q 105.	The sum of $\frac{3}{1.2} \cdot \frac{1}{2} + \frac{4}{2.3}$	$-\left(\frac{1}{2}\right)^2 + \frac{5}{3.4} \cdot \left(\frac{1}{2}\right)^3 + \dots to$	n terms is equal to	
	(a) $1 - \frac{1}{(n+1)2^n}$	(b) $1 - \frac{1}{n \cdot 2^{n-1}}$	(c) $1+\frac{1}{(n+1)2^n}$	(d) none of these
Q 106.	Let $f(n) = \left[\frac{1}{2} + \frac{n}{100}\right] wh$	ere [x] denotes the integ	gral part of x. Then the va	alue of $\sum_{n=1}^{100} f(n)$ is
	(a) 50	(b) 51	(c) 1	(d) none of these
Q 107.		n points on the parabola and $x_1 = 1$, $x_2 = 2$, then y		rant. If $A_r = (x_r, y_r)$, where
	(a) $-2^{\frac{n+1}{2}}$	(b) 2 ⁿ⁺¹	(c) $(\sqrt{2})^{n+1}$	(d) $2^{\frac{n}{2}}$
Q 108.	adjacent sides are draw	iagonal is drawn, and pa on on both sides of the d onsecutive line segment and the diagonal is	iagonal. The length of th	e diagonal n√2 cm. If
	(a) $n(n + 1) \sqrt{2} cm$	(b) n ² cm	(c) n(n+2)cm	(d) $n^2\sqrt{2}cm$
Q 109.		gth a, $a \in N$, $a > 1$. Let L_1 2, M_3 , be points on CD		
	(a) $\frac{1}{2}$ a(a – 1) ²	(b) $\frac{1}{2}$ a(a-1)(4a-1)	(c) $\frac{1}{2}(a-1)(2a-1)(4a-1)$	1) (d) none of these
Q 110.		ns of a decreasing GP is on the differer P is one of a decreasing GP is one of a decreasing GP is one of a decreasing GP is		
	(a) $-\frac{2}{3}$	(b) $\frac{4}{3}$	(c) $\frac{2}{3}$	(d) $-\frac{4}{3}$

Q 111. The lengths of three unequal edges of a rectangular solid block are in GP. The volume of the block is 216 cm³ and the total surface area is 252 cm². The length of the longest edge is

Q 112.	. ABC is a right-angled triangle in which $\angle B = 90^\circ$ and BC = a. If n points L ₁ , L ₂ ,,L _n on AB are such that AB is divided in n + 1 equal parts and L ₁ M ₁ , L ₂ M ₂ ,,L _n M _n are line segments parallel to BC and M ₁ , M ₂ ,, M _n are on AC then the sum of the lengths of L ₁ M ₁ , L ₂ M ₂ ,, L _n M _n is				
	(a) $\frac{a(n+1)}{2}$	(b) $\frac{a(n-1)}{2}$	(c) $\frac{an}{2}$		
	(d) impossible to find fi	om the given data			
	Choose the correct opt	ions. One or more optic	ons may be correct.		
Q 113.	3. If AM of the number 5^{1+x} and 5^{1-x} is 13 then the set of possible real values of x is				
	(a) $\left\{ 5, \frac{1}{5} \right\}$	(b) {1, 1}	(c) $\{x \mid x^2 - 1 = 0, x \in R\}$	(d) none of these	
Q 114.	14. If the AM of two positive numbers be three times their geometric mean then the ratio of the numbers is				
	(a) $3 \pm 2\sqrt{2}$	(b) $\sqrt{2} \pm 1$	(c) $17 + 12\sqrt{2}$	(d) $(3-2\sqrt{2})^{-2}$	
Q 115.	If a, b, c are in HP then	$\frac{1}{b-a} + \frac{1}{b-c}$ is equal to			
	(a) $\frac{2}{b}$	(b) $\frac{2}{a+c}$	(c) $\frac{1}{a} + \frac{1}{c}$	(d) none of these	
Q 116.	S _r denotes the sum of t	he first r terms of an AP.	Then S_{3n} : $(S_{2n} - S_n)$ is		
	(a) n	(b) 3n	(c) 3	(d) independent of n	
Q 117.	If $a^x = b^y = c^z$ and x, y, z	are in GP then log _c b is ed	qual to		
	(a) log _b a	(b) log _a b	(c) $\frac{z}{y}$	(d) none of these	
Q 118.	The value of $\sum_{r=1}^{n} \frac{1}{\sqrt{a+rx}}$	$\frac{1}{+\sqrt{a+(r-1)x}}$ is			
	(a) $\frac{n}{\sqrt{a} + \sqrt{a + nx}}$	(b) $\frac{\sqrt{a+nx}-\sqrt{a}}{x}$	(c) $\frac{n(\sqrt{a+nx}-a)}{x}$	(d) none of these	
Q 119.	Let $\sum_{n=1}^{n} r^4 = f(n)$. Then $\sum_{n=1}^{\infty} r^4 = f(n)$	$\sum_{n=1}^{\infty} (2r-1)^4$ is equal to			

(c) 18 cm

(d) 3 cm

(a) 12 cm

(b) 6 cm

(a)
$$f(2n) - 16f(n)$$
 for all $n \in N$

(b)
$$f(n) - 16f\left(\frac{n-1}{2}\right)$$
 when n is odd

(c)
$$f(n) - 16f\left(\frac{n}{2}\right)$$
 when n is even

(d) none of these

Q 120. If 2.ⁿP₁, ⁿP₂, ⁿP₃ are three consecutive terms of an AP then they are

(d) none of these

Q 121. In a GP the product of the first four terms is 4 and the second term is the reciprocal of the fourth term. The sum of the GP up to infinite terms is

(c)
$$\frac{8}{3}$$

(d)
$$-\frac{8}{3}$$

Q 122. If $\sum_{k=1}^{n} \left(\sum_{m=1}^{k} m^2 \right) = an^4 + bn^3 + cn^2 + dn + e$ then

(a)
$$a = \frac{1}{12}$$
 (b) $b = \frac{1}{6}$

(b)
$$b = \frac{1}{6}$$

(c)
$$d = \frac{1}{6}$$

(d)
$$e = 0$$

Q 123. If a, b, c, d are four positive numbers then

(a)
$$\left(\frac{a}{b} + \frac{b}{c}\right) \left(\frac{c}{d} + \frac{d}{e}\right) \ge 4.\sqrt{\frac{a}{e}}$$

(b)
$$\left(\frac{a}{b} + \frac{c}{d}\right) \left(\frac{b}{c} + \frac{d}{e}\right) \ge 4.\sqrt{\frac{a}{e}}$$

(c)
$$\frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{e} + \frac{e}{a} \ge 5$$

(d)
$$\frac{b}{a} + \frac{c}{b} + \frac{d}{c} + \frac{e}{d} + \frac{a}{e} \ge \frac{1}{5}$$

Q 124. Let $f(x) = \frac{1 - x^{n+1}}{1 - x}$ and $g(x) = 1 - \frac{2}{x} + \frac{3}{x^2} - \dots + (-1)^n \frac{n+1}{x^n}$. Then the constant term in $f'(x) \times g(x)$ is

(a)
$$\frac{n(n^2-1)}{6}$$
 when n is even

(b)
$$\frac{n(n+1)}{2}$$
 when n is odd

(c)
$$-\frac{n}{2}(n+1)$$
 when n is even

(d)
$$-\frac{n(n-1)}{2}$$
 when n is odd

Q 125. Let a_n = product of the first n natural numbers. Then for all $n \in N$

(a)
$$a^n \ge a_n$$

(b)
$$\left(\frac{n+1}{2}\right)^n \ge n!$$
 (c) $n^n \ge a_{n+1}$

(c)
$$n^n \ge a_{n+1}$$

(d) none of these

Q 126. Let the sets $A = \{2, 4, 6, 8,...\}$ and $B = \{3, 6, 9, 12,...\}$ and n(A) = 200, n(B) = 250. Then

	(a) $n(A \cap B) = 67$	(b) $n(A \cup B) = 450$	(c) $n(A \cap B) = 66$	(d) $n(A \cup B) = 384$	
Q 127.	Let a, x, b be in AP; a, y	, b be in GP and a, z, b be	e in HP. If $x = y + 2$ and a	= 5z then	
	(a) $y^2 = xz$	(b) $x > y > z$	(c) a = 9, b = 1	(d) $a = \frac{1}{4}, b = \frac{9}{4}$	
Q 128.	Let S_1 , S_2 , S_3 ,be squares such that for each $n \ge 1$, the length of a side of S_n equals the length of a diagonal of S_{n+1} . If the length of a side of S_1 is 10 cm then for which of the following values of n is the area of S_n less than 1 cm ² ?				
	(a) 7	(b) 8	(c) 9	(d) 10	
Q 129.	Three positive numbers from a GP. If the middle number is increased by 8, the three numbers form an AP. If the last number is also increased by 64 along with the previous increase in the middle number, the resulting numbers from a GP again. Then				
	(a) common ratio = 3	(b) first number = $\frac{4}{9}$	(c) common ratio = -5	(d) first number = 4	
Q 130.	Q 130. If a, b, c are in GP and a, p, q are in AP such that 2a, b + p, c + q are in GP then the comm difference of the AP is				
	(a) √2a	(b) $(\sqrt{2} + 1)(a - b)$	(c) $\sqrt{2}(a+b)$	(d) $(\sqrt{2}-1)(b-a)$	
Q 131.	If x, y, z are positive nu	mbers in AP then			
	(a) $y^2 \ge xy$	(b) $y \ge 2\sqrt{xz}$	(c) $\frac{x+y}{2y-x} + \frac{y+z}{2y-z}$ has t	the minimum value 2	
	(d) $\frac{x+y}{2y-x} + \frac{y+z}{2y-z} \ge 4$				
Q 132.	Between two unequal t then g_1 . g_2 is equal to	numbers, if a_1 , a_2 are two	o AMs; g ₁ , g ₂ are two GM	Is and h_1 , h_2 are two HMs	
	(a) a ₁ h ₁	(b) a ₁ h ₂	(c) a ₂ h ₂	(d) a ₂ h ₁	
Q 133.	The number 1, 4, 16 can be three terms (not necessarily consecutive) of				
	(a) no AP		(b) only one GP		
	(c) infinite number of A	Ps	(d) infinite number of G	GPs	

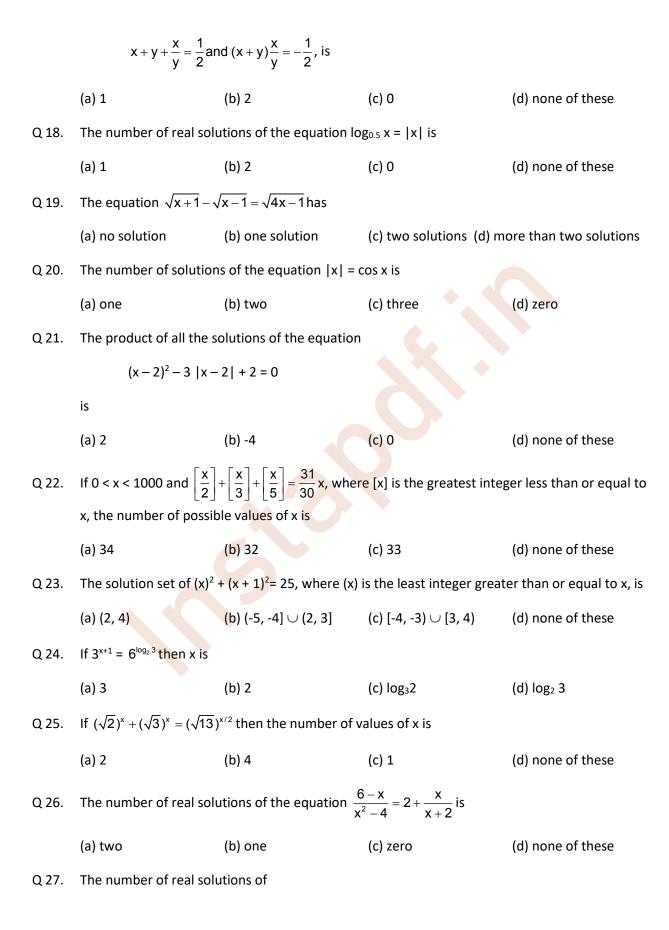
Answers

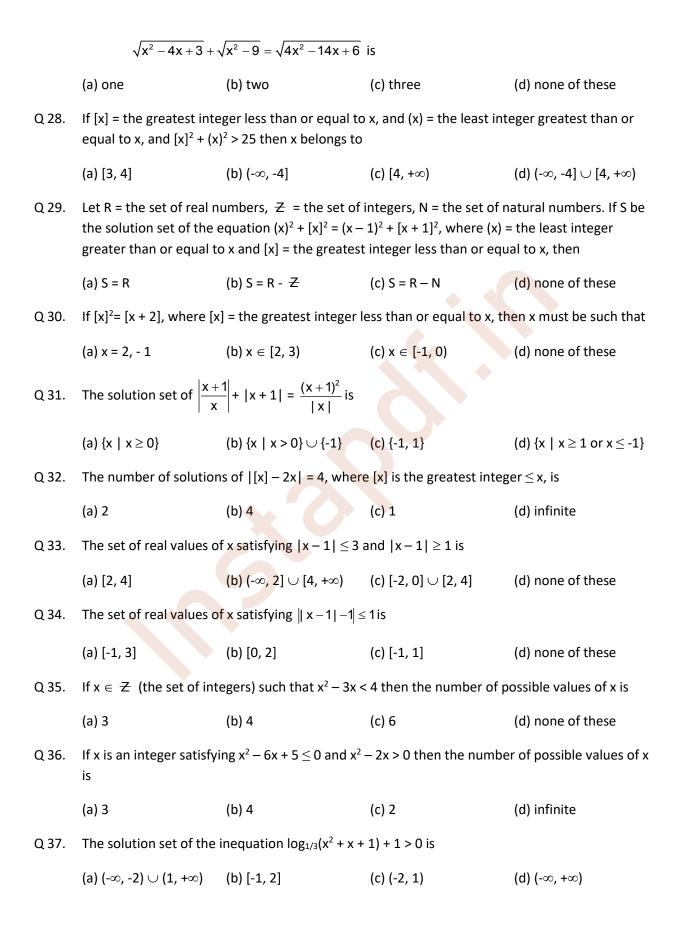
1a	2c	3b	4c	5c	6d	7c	8b	9a	10c
11c	12b	13c	14d	15b	16a	17b	18a	19c	20b
21d	22a	23b	24d	25c	26a	27a	28b	29a	30d
31a	32b	33c	34a	35b	36c	37b	38a	39c	40b
41b	42c	43b	44b	45b	46d	47c	48b	49b	50b
51d	52b	53c	54b	55a	56c	57a	58a	59a	60a
61c	62a	63d	64a	65a	66b	67a	68c	69c	70b
71c	72b	73c	74d	75d	76b	77c	78b	79a	80b
81c	82c	83b	84a	85c	86a	87c	88b	89d	90c
91b	92c	93a	94c	95a	96b	97d	98a	99a	100a
101c	102b	103d	104c	105a	106b	107c	108d	109b	110c
111a	112c	113bc	114cd	115ac	116cd	117ac	118ab	119a	120abc
121abc	d 122ac	123abc	124bc	125ab	126cd	127ac	128bcd	129ad	130bd
131ad	132bd	133cd							

Equation, Inequation and Expression

If x is a real number such that $x(x^2 + 1)$, $(-1/2)x^2$, 6 are three consecutive terms of an AP then the

Choose the most appropriate option (a, b, c or d).


Q 1.


	next two consecutive term of the AP are					
	(a) 14, 6	(b) -2, -10	(c) 14, 22	(d) none of these		
Q 2.	The number of real solu	utions of $x - \frac{1}{x^2 - 4} = 2 - \frac{1}{x^2 - 4}$	$\frac{1}{x^2-4}$ is			
	(a) 0	(b) 1	(c) 2	(d) infinite		
Q 3.	The number of values of	of a for which				
	$(a^2 - 3a + 2)x^2$	$+ (a^2 - 5a + 6)x + a^2 + a^2$	$^{2}-4=0$			
	is an identity in x if					
	(a) 0	(b) 2	(c) 1	(d) 3		
Q 4.	The number of values of	of the pair (a, b) for which	1			
	$a(x + 1)^2 + b(x^2 - 3x - 2) + x + 1 = 0$					
	is an identity in x is					
	(a) 0	(b) 1	(c) 2	(d) infinite		
Q 5.	The number of values of	of the triplet (a, b, c) for v	vhich			
	a cos2x + b sin	$y^2 \times + c = 0$				
	is satisfied by all real x	is				
	(a) 0	(b) 2	(c) 3	(d) infinite		
Q 6.	The polynomial (ax² + b	$(ax^2 - dx - c)$, ac =	≠ 0, has			
	(a) four real zeros		(b) at least two real zeros			
	(c) at most two real zer	os	(d) no real zeros			
Q 7.	Let $f(x) = ax^3 + 5x^2 - bx + 1$. If $f(x)$ when divided by $2x + 1$ leaves 5 as remainder, and $f'(x)$ is divisible by $3x - 1$ then					
	(a) a = 26, b = 10	(b) a = 24, b = 12	(c) a = 26, b = 12	(d) none of these		
Q 8.	$x^{3^n} + y^{3^n}$ is divisible by	x + y if				
	(a) n is any integer ≥ 0		(b) n is an odd positive	integer		

Q 9.	If x, y are rational numbers such that				
	x + y + (x - 2y)	$\sqrt{2} = 2x - y + (x - y - 1)$	√6		
	then				
	(a) x and y cannot be d	letermined	(b) x = 2, y = 1		
	(c) x = 5, y = 1		(d) none of these		
Q 10.	The number of real sol	utions of the equation			
	$2^{x/2} + (\sqrt{2} + 1)^x$	$s = (5 + 2\sqrt{2})^{x/2}$			
	is				
	(a) one	(b) two	(c) four	(d) infinite	
Q 11.	The number of real sol	utions of the equation e	x = x is		
	(a) 1	(b) 2	(c) 0	(d) none of these	
Q 12.	The sum of the real roo	ots of the equation $x^2 +$	x - 6 = 0 is		
	(a) 4	(b) 0	(c) -1	(d) none of these	
Q 13.	The solutions of the ed	quation $2x - 2[x] = 1$, who	ere [x] = the greatest into	eger less than or equal to	
	(a) $x = n + \frac{1}{2}, n \in \mathbb{N}$	(b) $x = n - \frac{1}{2}, n \in \mathbb{N}$	(c) $x = n + \frac{1}{2}, n \in \mathbb{Z}$	(d) $n < x < n+1, n \in Z$	
Q 14.	The number of real sol	utions of the equation s	in (e ^x) = $5^x + 5^{-x}$ is		
	(a) 0	(b) 1	(c) 2	(d) infinitely many	
Q 15.	The number of real sol	ution of $1 + e^x - 1 = e^x$	(e ^x – 2) is		
	(a) 0	(b) 1	(c) 2	(d) 4	
Q 16.	The equation $2\sin^2\frac{x}{2}$.	$\cos^2 x = x + \frac{1}{x}, 0 < x \le \frac{\pi}{2} I$	nas		
	(a) one real solution		(b) no real solution		
	(c) infinitely many real	solutions	(d) none of these		
Q 17.	If $y \neq 0$ then the numb	er of values of the pair (x	x, y) such that		

(d) n is a rational number

(c) n is an even positive integer

Q 38.	If $5^x + (2\sqrt{3})^{2x} \ge 13^x$ then the solution set for x is					
	(a) [2, +∞)	(b) {2}	(c) (-∞, 2]	(d) [0, 2]		
Q 39.	If $3^{x/2} + 2^x > 25$ then th	e solution set is				
	(a) R	(b) (2, +∞)	(c) (4, +∞)	(d) none of these		
Q 40.	If $\sin^x \alpha + \cos^x \alpha \ge 1$, 0	$< \alpha < \frac{\pi}{2}$, then				
	(a) $x \in [2, +\infty)$	(b) $x \in (-\infty, 2)$	(c) $x \in [-1, 1]$	(d) none of these		
Q 41.	The solution set of x ² +	$-2 \le 3x \le 2x^2 - 5$ is				
	(a) ф	(b) [1, 2]	(c) $(-\infty, -1] \cup [5/2, +\infty)$	(d) none of these		
Q 42.	The solution set of $\frac{x^2}{x^2}$	$\frac{-3x+4}{x+1} > 1, x \in R, is$				
	(a) (3, +∞)	(b) (-1, 1) \cup (3, + ∞)	(c) $[-1, 1] \cup [3, +\infty)$	(d) none of these		
Q 43.	The number of integra	I solutions of $\frac{x+2}{x^2+1} > \frac{1}{2}$	S			
	(a) 4	(b) 5	(c) 3	(d) none of these		
Q 44.	If a, b, c are nonzero, unequal rational numbers then the roots of the equation $abc^2x^2 + (3a^2 + b^2)cx - 6a^2 - ab + 2b^2 = 0$ are					
	(a) rational	(b) imaginary	(c) irrational	(d) none of these		
Q 45.	If I, m are real and $I \neq r$	n then the roots of the e	quation			
	$(I - m)x^2 - 5(I + m)x - 2(I - m) = 0$ are					
	(a) real and equal	(b) nonreal complex	(c) real and unequal	(d) none of these		
Q 46.	If a, b, c, d are four cor - c) + $2(x - b)(x - d) = 0$		reasing AP then the root	s of the equation $(x - a)(x - a)$		
	(a) real and distinct	(b) nonreal complex	(c) real and equal	(d) integers		
Q 47.	If a, b, c are three disti	nct positive real number	then the number of real	roots of $ax^2 + 2b x - c$		
	(a) 4	(b) 2	(c) 0	(d) none of these		
Q 48.	The equation $x^2 - 6x +$	$8 + \lambda(x^2 - 4x + 3) = 0, \lambda$	∈ R, has			

	(c) real roots for $\lambda > 0$ only		(d) real and unequal r	oots for $\lambda = 0$ only	
Q 49.	If $\cos \theta$, $\sin \phi$, $\sin \theta$ are	e in GP then roots of x^2 -	+ 2 cot φ . x + 1 = 0 are alv	$2 \cot \phi \cdot x + 1 = 0$ are always	
	(a) equal	(b) real	(c) imaginary	(d) greater than 1	
Q 50.	The roots of $ax^2 + bx +$ < b. Then	$c = 0$, where $a \neq 0$ and $c \neq 0$	coefficients are real, are	nonreal complex and a + o	
	(a) 4a + c > 2b	(b) 4a + c < 2b	(c) 4a + c = 2b	(d) none of these	
Q 51.	The equation $(a + 2)x^2$	+ $(a - 3)x = 2a - 1$, $a \neq -$	2 has roots rational for		
	(a) all rational values of	of except a = -2	(b) all real values of a	except a = -2	
	(c) rational values of a	> \frac{1}{2}	(d) none of these		
Q 52.	If a . 3 ^{tanx} + a . 3 ^{-tanx} – 2	= 0 has real solutions,	$x \neq \frac{\pi}{2}$, $0 \le x \le \pi$, then the	e set of possible values of	
	the parameter a is				
	(a) [-1, 1]	(b) [-1, 0)	(c) (0, 1]	(d) (0, +∞)	
Q 53.	If a > 1, roots of the ed	quation $(1 - a)x^2 + 3ax -$	1 = 0 are		
	(a) one positive and or	ne negative	(b) both negative		
	(c) both positive		(d) both nonreal comp	olex	
Q 54.	If $a \in R$, $b \in R$ then the	e equation $x^2 - abx - a^2$	= 0 has		
	(a) one positive root a	nd one negative root	(b) both roots positive		
	(c) both roots negative	2	(d) nonreal roots		
Q 55.	If the roots of the equ	ation $x^2 - 2ax + a^2 + a -$	3 = 0 are less than 3 ther	ı	
	(a) a < 2	(b) $2 \le a \le 3$	(c) 3 < a ≤ 4	(d) a > 4	
Q 56.	If α , β are the roots of	$x^2 - 3x + a = 0, a \in R$ and	ad α < 1 < β then		
	(a) a ∈ (-∞, 2)	(b) $a \in \left(-\infty, \frac{9}{4}\right]$	(c) $a \in \left(2, \frac{9}{4}\right]$	(d) none of these	
Q 57.	If α , β be the roots of	$4x^2 - 16x + \lambda = 0, \lambda \in R$	such that 1 < $lpha$ < 2 and 2	$< \beta < 3$ then the number	

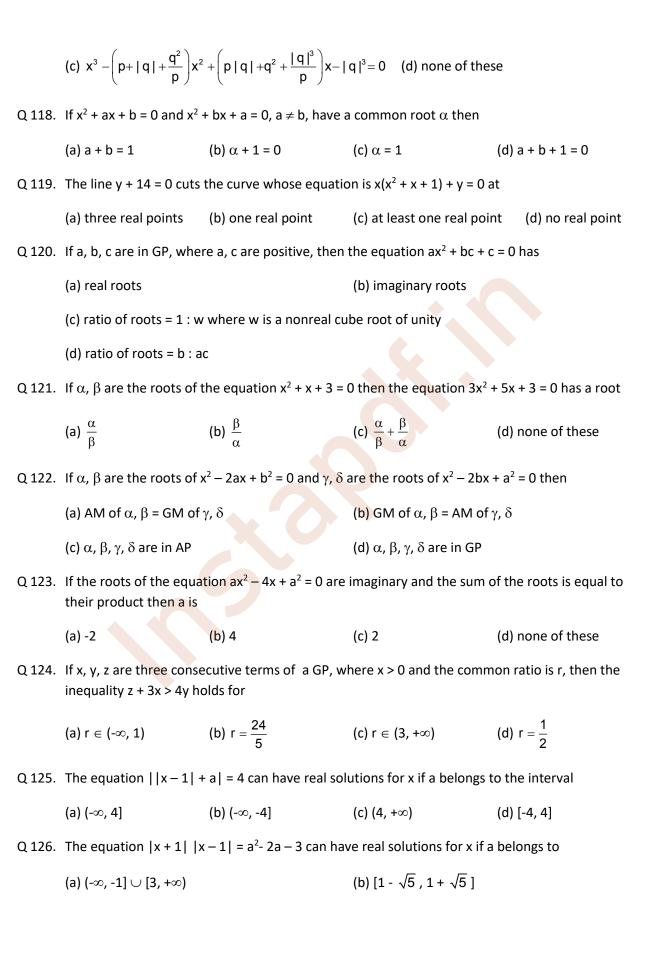
(b) real roots for λ < 0 only

(a) real and unequal roots for all $\boldsymbol{\lambda}$

of integral solutions of $\boldsymbol{\lambda}$ is

	(a) 5	(b) 6	(c) 2	(d) 3	
Q 58.	The number of integer $3x + 6 - a = 0$ has both	values of a for which x^2 -roots negative is	- (a – 1)x + 3 = 0 has botl	n roots positive and x^2 +	
	(a) 0	(b) 1	(c) 2	(d) infinite	
Q 59.	If X denotes the set of than p then X is equal t	real numbers p for whicl o	h the equation $x^2 = p(x +$	p) has its roots greater	
	(a) $\left(-2,-\frac{1}{2}\right)$	(b) $\left(-\frac{1}{2},\frac{1}{4}\right)$	(c) null set φ	(d) (-∞, 0)	
Q 60.	If $\cos^4 x + \sin^2 x - p = 0$,	$p \in R \text{ has real solutions}$	then		
	(a) $p \le 1$	(b) $\frac{3}{4} \le p \le 1$	(c) $p \ge \frac{3}{4}$	(d) none of these	
Q 61.	If one root of the equat	tion $(k^2 + 1)x^2 + 13x + 4k$	= 0 is reci <mark>pro</mark> cal of the o	ther then k has the value	
	(a) $-2 + \sqrt{3}$	(b) $2-\sqrt{3}$	(c) 1	(d) none of these	
Q 62.	If the ratio of the roots μ,ν are in	of $\lambda x^2 + \mu x + \nu = 0$ is equ	al to the ratio of the roo	ts of $x^2 + x + 1 = 0$ then λ ,	
	(a) AP	(b) GP	(c) HP	(d) none of these	
Q 63.	p, q, r and s are integer $s^2 = 0$ are equal then	s. If the AM of the roots	of $x^2 - px + q^2 = 0$ and G	M of the roots of $x^2 - rx +$	
	(a) q is an odd integer	(b) r is an even integer	(c) p is an even integer	(d) s is an odd integer	
Q 64.	If α , β are roots of the equation $(x-a)(x-b)=c$, $c\neq 0$, then the roots of the equation $(x-\alpha)(x-\beta)+c=0$ are				
	(a) a, c	(b) b, c	(c) a, b	(d) a + c, b + c	
Q 65.	If the roots of $4x^2 + 5k =$	= (5 + 1)x differ by unity t	then the negative value	of k is	
	(a) -3	(b) $-\frac{1}{5}$	(c) $-\frac{3}{5}$	(d) none of these	
Q 66.	The harmonic mean of	the roots of the equation	n		
	$(5+\sqrt{2})x^2-(4$	$(4+\sqrt{5})x + 8 + 2\sqrt{5} = 0$ is			
	(a) 2	(b) 4	(c) 6	(d) 8	

Q 67.	67. If the product of the roots of the equation $x^2 - 5x + 4^{\log_2 \lambda} = 0$ is 8 then λ is				
	(a) $\pm 2\sqrt{2}$	(b) $2\sqrt{2}$	(c) 3	(d) none of these	
Q 68.	If the roots of $a_1x^2 + b_1$	$x + c_1 = 0$ are α_1 , β_1 , and	those of		
	$a_2x^2 + b_2x + c_2 =$	\approx 0 are $lpha_{\text{2}}$, eta_{2} such that $lpha$	$_{1}\alpha_{2}=\beta_{1}\beta_{2}=1$		
	then				
	(a) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	(b) $\frac{a_1}{c_2} = \frac{b_1}{b_2} = \frac{c_1}{a_2}$	(c) $a_1a_2 = b_1b_2 = c_1c_2$	(d) none of these	
Q 69.	If α , β are the roots of	$ax^2 + c = bx$ then the equ	uation $(a + cy)^2 = b^2y$ in y	has the roots	
	(a) $\alpha^{\text{-1}}$, $\beta^{\text{-1}}$	(b) α^2 , β^2	(c) αβ ⁻¹ , α ⁻¹ β	(d) α^{-2} , β^{-2}	
Q 70.	If the roots of ax ² – bx does not change is	– c = 0 change by the sa	me quantity then the exp	pression in a, b, c that	
	(a) $\frac{b^2 - 4ac}{a^2}$	(b) $\frac{b-4c}{a}$	$(c) \frac{b^2 + 4ac}{a^2}$	(d) none of these	
Q 71.	If α , β are the roots of whose roots are α^2 - β^2		roduct of the roots of the	e quadratic equation	
	(a) $p(p^2 - q)^2$	(b) $p(p^2 - q)(p^2 - 4q)$	(c) $p(p^2 - 4q)(p^2 + q)$	(d) none of these	
Q 72.			on $ax^2 + bx + c = 0$ is equa	l to the sum of the	
	squares of their reciprocals then $\frac{b^2}{ac} + \frac{bc}{a^2}$ is equal to				
	(a) 2	(b) -2	(c) 1	(d) -1	
Q 73.	If the absolute value of	f the difference of roots	of the equation $x^2 + px +$	$1 = 0$ exceed $\sqrt{3}p$ then	
	(a) p < -1 or p > 4	(b) p > 4	(c) -1 < p < 4	(d) $0 \le p < 4$	
Q 74.	If α , β are roots of x^2 + equal to	px + q = 0 and γ , δ are the	ne roots of $x^2 + px - r = 0$	then $(\alpha - \gamma)(\alpha - \delta)$ is	
	(a) q + r	(b) q – r	(c) –(q + r)	(d) $-(p + q + r)$	
Q 75.	If α , β are roots of 375	$x^2 - 25x - 2 = 0$ and $s_n =$	$\alpha^n + \beta^n$ then $\lim_{n \to \infty} \sum_{r=1}^n s_r$ is		


	(a) $\frac{7}{116}$	(b) $\frac{1}{12}$	(c) $\frac{29}{358}$	(d) none of these
Q 76.	The quadratic equation = 0 is	f the equation $x^2 + 7x - 1$		
	(a) $14x^2 + 14x - 45 = 0$		(b) $45x^2 - 14x + 14 = 0$	
	(c) $14x^2 + 45x - 14 = 0$		(d) none of these	
Q 77.	Let $\alpha \neq \beta$ and $\alpha^2 + 3 = 3$	5α while β^2 = 5β - 3. The	quadratic equation who	se roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ is
	(a) $3x^2 - 31x + 3 = 0$	(b) $3x^2 - 19x + 3 = 0$	(c) $3x^2 + 19x + 3 = 0$	(d) none of these
Q 78.	If a and b are rational a	and b is not a perfect squ	uare then the quadratic	equation with rational
	coefficients whose one	e root is $\frac{1}{a + \sqrt{b}}$ is		
	(a) x^2 - 2ax + (a ² – b) = 0)	(b) $(a^2 - b)x^2 - 2ax + 1$	= 0
	(c) $(a^2 - b)x^2 - 2bx + 1$	= 0	(d) none of these	
Q 79.	If $\frac{1}{4-3i}$ is a root of ax^2	+ bx + 1 = 0, where a, b	are real, then	
	(a) a = 25, b = -8	(b) a = 25, b = 8	(c) a = 5, b = 4	(d) none of these
Q 80.	If α , β , γ be the roots of	of the equation $x(1 + x^2)$	$+ x^2(6 + x) + 2 = 0$ then th	e value of $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$ is
	(a) -3	(b) $\frac{1}{2}$	(c) $-\frac{1}{2}$	(d) none of these
Q 81.	If the roots of $x^3 - 12x^3$	$^2 + 39x - 28 = 0$ are in AP	then their common diffe	erence is
	(a) ±1	(b) ±2	(c) ±3	(d) ±4
Q 82.	The roots of the equat	ion x ³ + 14x ² - 84x – 216 :	= 0 are in	
	(a) AP	(b) GP	(c) HP	(d) none of these
Q 83.	If $z_0 = \alpha + i\beta$, $= \sqrt{-1}$, the	en the roots of the cubi	c equation	
	$x^3 - 2(1 + \alpha)x^2$	+ $(4\alpha + \alpha^2 + \beta^2)x - 2(\alpha^2 - \beta^2)x - (\alpha^2 - \beta^2)$	$+ \beta^2$) = 0 are	
	(a) $2, z_0, \overline{z}_0$	(b) 1, z ₀ , -z ₀	(c) $2, z_0, -\overline{z}_0$	(d) $2, -z_0, \overline{z}_0$
Q 84.	If 3 and 1 + $\sqrt{2}$ are two	o roots of a cubic equation	on with rational coefficie	nts then the equation is

	(a) $x^2 - 5x^2 + 9x - 9 = 0$ (b) $x^3 - 3x^2 - 4x + 12 = 0$ (c) $x^3 - 5x^2 + 7x + 3 = 0$ (d) none of these				
Q 85.	85. Let a, b, c be real numbers and a \neq 0. If α is a root of $a^2x^2 + bx + c = 0$, β is a root of $a^2x^2 - bx - c = 0$, and $0 < \alpha < \beta$ then the equation $a^2x^2 + 2bx + 2c = 0$ has a root γ that always satisfies				
	(a) $\gamma = \frac{1}{2}(\alpha + \beta)$	(b) $\gamma = \alpha + \frac{\beta}{2}$	(c) $\gamma = \alpha$	(d) $\alpha < \gamma < \beta$	
Q 86.	Let a, b, c three real nu	mber such that 2a + 3b +	- 6c = 0. Then the quadra	itic equation ax ² + bx + c	
	(a) imaginary roots		(b) at least one root in (0, 1)		
	(c) at least one root in (-1, 0)	(d) both roots in (1, 2)		
Q 87.	If the equations $2x^2 - 7$	$x + 1 = 0$ and $ax^2 + bx + 2$	= 0 have a common roo	t then	
	(a) a = 2, b = -7	(b) $a = -\frac{7}{2}, b = 1$	(c) a = 4, b = -14	(d) none of these	
Q 88.	The quadratic equation	$s x^2 + (a^2 - 2)x - 2a^2 = 0$	and $x^2 - 3x + 2 = 0$ have		
	(a) no common root for	ralla∈R	(b) exactly one common root for all $a \in R$		
	(c) two common roots f	for some a ∈ R	(d) none of these		
Q 89.	If the equation $ax^2 + bx$ value of $a - b + c$ is	$+ c = 0$ and $cx^2 + bx + a =$	= 0, a ≠ c have a negative	common root then the	
	(a) 0	(b) 2	(c) 1	(d) none of these	
Q 90.	If the equations $x^2 + ix + ix$	$+ a = 0, x^2 - 2x + ia = 0, a$	≠ 0 have a common root	t then	
	(a) a is real (b) a =	$\frac{1}{2} + i$ (c) $a = \frac{1}{2} - i$	(d) the other root is also	o common	
Q 91.		: 1, 2, 3 are three quadra number of solutions of t	tic equations of which each triplet (p_1, p_2, p_3) is	ach pair has exactly one	
	(a) 2	(b) 1	(c) 9	(d) 27	
Q 92.	If $(\lambda^2 + \lambda - 2)x^2 + (\lambda + 2)$:	$x < 1$ for all $x \in R$ then λ	belongs to the interval		
	(a) (-2, 1)	(b) $\left(-2,\frac{2}{5}\right)$	(c) $\left(\frac{2}{5},1\right)$	(d) none of these	
Q 93.	The least integral value	of k for which $(k-2)x^2$	$-8x + k + 4 > 0$ for all $x \in$	R, is	
	(a) 5	(b) 4	(c) 3	(d) none of these	

Q 94.	Q 94. The set of possible values of x such that $5^x + (2\sqrt{3})^{2x} - 169$ is always positive is			sitive is	
	(a) [3, +∞)	(b) [2, +∞)	(c) (2, +∞)	(d) none of these	
Q 95.	If all real values of x ob	tained from the equatio	n		
	$4^{x} - (a - 3)2^{x} +$	a - 4 = 0			
	are nonpositive then				
	(a) a ∈ (4, 5]	(b) $a \in (0, 4)$	(c) $a \in (4, +\infty)$	(d) none of these	
Q 96.	The set of possible valu	ues of λ for which			
	$x^2 - (\lambda^2 - 5\lambda + 5)$	$5)x + (2\lambda^2 - 3\lambda - 4) = 0$			
	has roots whose sum a	nd product are both less	s than 1 is		
	(a) $\left(1,\frac{5}{2}\right)$	(b) (1, 4)	(c) $\left[1, \frac{5}{2}\right]$	(d) $\left(1,\frac{5}{2}\right)$	
Q 97.	If $log_{10} x + log_{10} y \ge 2$ th	en the smallest possible	value of x + y is		
	(a) 10	(b) 30	(c) 20	(d) none of these	
Q 98.	If $f(x) = \frac{x^2 - 1}{x^2 + 1}$ for every	y real number x then the	minimum value of f		
	(a) does not exist becar	use f is unbounded	(b) is not attained even	though f is bounded	
	(c) is equal to 1		(d) is equal to -1		
Q 99.	If $ax^2 + bx + 6 = 0$ does not have two distinct real roots, where $a \in R$, $b \in R$, then the least value of $3a + b$ is				
	(a) 4	(b) -1	(c) 1	(d) -2	
Q 100.	If $ab = 2a + 3b$, $a > 0$, b	> 0 then the minimum v	alue of ab is		
	(a) 12	(b) 24	(c) $\frac{1}{4}$	(d) none of these	
Q 101.	If $x^2 + px + 1$ is a factor	of the expression ax ³ + b	ox + c then		
	(a) $a^2 + c^2 = -ab$	(b) $a^2 - c^2 = -ab$	(c) $a^2 - c^2 = ab$	(d) none of these	
Q 102.	If $x^2 - 1$ is a factor of x^4	$+ ax^3 + 3x - b$ then			
	(a) a = 3, b = -1	(b) a = -3, b = 1	(c) a = 3, b = 1	(d) none of these	

Q 103.	The number of values of	of k for which		
	${x^2 - (k-2)x + }$	k^2 { $x^2 + kx + (2k - 1)$ }		
	is a perfect square is			
	(a) 1	(b) 2	(c) 0	(d) none of these
Q 104.	If $x + \lambda y - 2$ and $x - \mu y +$	1 are factors of the exp	ression	
	$6x^2 - xy - y^2 - 0$	6x + 8y – 12		
	then			
	(a) $\lambda = \frac{1}{3}, \mu = \frac{1}{2}$	(b) $\lambda=2, \mu=3$	(c) $\lambda = \frac{1}{3}, \mu = -\frac{1}{2}$	(d) none of these
Q 105.	If $x - y$ and $y - 2x$ are to	wo factors of the expres	sion	
	$x^3 - 3x^2y + \lambda xy^2$	$^{2} + \mu y^{3}$		
	then			
	(a) λ = 11, μ = -3	(b) $\lambda = 3$, $\mu = -11$	(c) $\lambda = \frac{11}{4}, \mu = -\frac{3}{4}$	(d) none of these
Q 106.	If $x + y$ and $y + 3x$ are to	wo factors of the expres	sion	
	$\lambda x^3 - \mu x^2 y + x y^2$	+ y ³		
	then the third factor is			
	(a) y + 3x	(b) y – 3x	(c) y – x	(d) none of these
Q 107.	If x, y, z are real and dis	stinct then		
	$f(x, y) = x^2 + 4y$	$^{2} + 9z^{2} - 6yz - 3zx - 2xy$		
	is always			
	(a) non-negative	(b) nonpositive	(c) zero	(d) none of these
Q 108.	If $x^2 + y^2 + z^2 = 1$ then the	ne value of xy + yz + zx li	es in the interval	
	(a) $\left[\frac{1}{2},2\right]$	(b) [-1, 2]	(c) $\left[-\frac{1}{2},1\right]$	(d) $\left[-1,\frac{1}{2}\right]$
Q 109.	If $a \in R$, $b \in R$ then the	e factors of the expression	on $a(x^2 - y^2) - bxy$ are	
	(a) real and different	(b) real and identical	(c) complex	(d) none of these

Q 110.	110. If a, b, c are in HP then the expresson				
	$a(b-c)x^2+b(c$	– a)x + c(a – b)			
	(a) has real and distinct	factors	(b) is a perfect square		
	(c) has no real factor		(d) none of these		
Q 111.	The number of positive	integral values of k for v	which (16x² + 12x + 39) +	$+ k(9x^2 - 2x + 11)$	
	is a perfect square is				
	(a) two	(b) zero	(c) one	(d) none of these	
Q 112.	If $(x-1)^3$ is a factor of x	$x^4 + ax^3 + bx^2 + cx - 1$ the	n the other factor is		
	(a) x – 3	(b) x + 1	(c) x + 2	(d) none of these	
	Choose the correct opt	ions. One or more optic	ons may be correct.		
Q 113.	If $x^2 - bx + c = 0$ has equ	ual integral roots then			
	(a) b and c are integers		(b) b and c are even int	egers	
	(c) b is an even integer and c is a perfect square of a positive integer				
	(d) none of these				
Q 114.	Let A, G and H be the A whose roots are A and	M, GM and HM of two p H is	ositive numbers a and b	. The quadratic equatin	
	(a) $Ax^2 - (A^2 + G^2)x + AG$	$\hat{\mathbf{s}}^2 = 0$	(b) $Ax^2 - (A^2 + H^2)x + AH$	$H^2 = 0$	
	(c) $Hx^2 - (H^2 + G^2)x + HG^2$	$\hat{\sigma}^2 = 0$	(d) none of these		
Q 115.	Let A, G and H are the AM, GM and HM respectively of two unequal positive integers. Then the equation $Ax^2 - G x - H = 0$ has				
	(a) both roots as fraction	ons	(b) at least one root wh	nich is a negative fraction	
	(c) exactly one positive	root	(d) at least one root wh	nich is an integer	
Q 116.	Let $x^2 - px + q = 0$, when	$re\;p\inR,q\inR$, have the	α roots α , β such that α +	-2β = 0 then	
	(a) $2p^2 + q = 0$	(b) $2q^2 + p = 0$	(c) q < 0	(d) none of these	
Q 117.	The cubic equation who	ose roots are the AM, GN	ለ and HM of the roots o	$f x^2 - 2px + q^2 = 0$ is	
	(a) $(x - p)(x - q)(x - p -$	q) = 0	(b) $(x - p)(x - q)(px -$	$q^2) = 0$	

	(c) $[1-\sqrt{5}$, -1] \cup [3, 1 -	+ √5]		(d) none of these			
Q 127.		the common roots of the equations $x^3 + 2x^2 + 2x + 1 = 0$ and $1 + x^{130} + x^{1988} = 0$ are (where onreal cube root of unity)					
	(a) ω	(b) ω^2		(c) -1	(d) ω - ω^2		
Q 128.	If $\boldsymbol{\alpha}$ is a root of the equ	uation 2x(2x + 1)	= 1 then	ne other root is			
	(a) $3\alpha^3$ - 4α	(b) $-2\alpha(\alpha + 1)$		(c) $4\alpha^3$ - 3α	(d) none of these		
Q 129.	For the equation 2x ² +	$6\sqrt{2} x + 1 = 0$					
	(a) roots are rational			(b) if one root is $p + \sqrt{q}$ then the other is $-p + \sqrt{q}$			
	(c) roots are irrational			(d) if one root is $P + \sqrt{q}$	then the other is p- \sqrt{q}		
Q 130.	If α , β are the real roots of $x^2 + px + q = 0$ and α^4 , β^4 are the roots of $x^2 - rx + s = 0$ then the equation $x^2 - 4qx + 2q^2 - r = 0$ has always						
	(a) two real roots			(b) two negative roots			
	(c) two positive roots			(d) one positive root ar	nd one negative root		
Q 131.	The equation $x^{3/4(\log_2 x)^2}$	$e^{2 + \log_2 x - 5/4} = \sqrt{2} \text{ has}$					
	(a) at least one negative solution			(b) exactly ne irrational solution			
	(c) exactly three real s	olutions		(d) two nonreal comple	ex roots		
Q 132.	If a, b, c are rational and no two of them are equal then the equations						
	$(b-c)x^2 + (c-a)x + a - b = 0$						
	and $a(b-c)x^2 + b(c-a)x + c(a-b) = 0$						
	(a) have rational roots		(b) will be such that at least one has rational roots				
	(c) have exactly one root common (d) have at least one root common						
Q 133.	The equations $x^2 + b^2 =$	$= 1 - 2bx$ and $x^2 +$	$a^2 = 1 -$	2ax have one and only o	one root common. Then		
	(a) a – b = 2	(b) $a - b + 2 = 0$)	(c) a - b = 2	(d) none of these		
Q 134.	If $px^2 + qx + r = 0$ has n	o real roots and p	o, q, r are	e real such that $p + r > 0$	then		
	(a) $p - q + r < 0$	(b) $p - q + r > 0$		(c) $p + r = 0$	(d) all of these		

Q 135. Let p and q be roots of the equation $x^2 - 2x + A = 0$, and let r and s be the roots of the equation $x^2 - 18x + B = 0$. If p < q < r < s are in arithmetic progression then

(a) A = -83, B = -3

(b) A = -3, B = 77

(c) q = 3, r = 7

(d) p + q + r + s = 20

Q 136. The quadratic equation $x^2 - 2x - \lambda = 0$, $\lambda \neq 0$

(a) cannot have a real root if $\lambda < -1$

(b) can have a rational root if λ is a perfect square

(c) cannot have an integral root if $n^2 - 1 < \lambda < n^2 + 2n$ where n = 0, 1, 2, 3, ...

- (d) none of these
- Q 137. A quadratic equation whose roots are $\left(\frac{\gamma}{\alpha}\right)^2$ and $\left(\frac{\beta}{\alpha}\right)^2$, where α , β , γ are the roots of x^3 + 27 = 0,

(a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$

Q 138. The graph of the curve $x^2 = 3x - y - 2$ is

(a) between the lines x = 1 and $x = \frac{3}{2}$ (b) between the lines x = 1 and x = 2

(c) strictly below the line 4y = 1

(d) none of these

Q 139. $a(x^2 - y^2) + \lambda \{x(y + 1) + 1\}$ can be resolved into linear rational factors. Then

(a) $\lambda = 1$

(b) $\lambda = \frac{4a^2}{a-1}$, $a \ne 1$ (c) $\lambda = 0$, a = 1 (d) none of these

Q 140. $x^2 - 4$ is a factor of $f(x) = (a_1x^2 + b_1x + c_1)$. $(a_2x^2 + b_2x + c_2)$ if

(a) $b_1 = 0$, $c_1 + 4a_1 = 0$

(b) $b_2 = 0$, $c_2 + 4a_2 = 0$

(c) $4a_1 + 2b_1 + c_1 = 0$, $4a_2 + c_2 = 2b_2$ (d) $4a_1 + c_1 = 2b_1$, $4a_2 + 2b_2 + c_2 = 0$

Q 141. $ax^2 + by^2 + cz^2 + 2ayz + 2bzx + 2cxy$ can be resolved into liner factors if a, b, c are such that

(a) a = b = c

(b) ab + bc + ca = 1

(c) a + b + c = 0

(d) none of these

Q 142. If a, b are the real roots of $x^2 + px + 1 = 0$ and c, d are the real roots of $x^2 + qx + 1 = 0$ then (a – c)(b-c)(a+b)(b+d) is divisible by

(a) a + b + c + d

(b) a + b - c - d (c) a - b + c - d (d) a - b - c - d

Q 143. If $x \in [2, 4]$ then for the expression $x^2 - 6x + 5$

(a) the least value = -4

(b) the greatest value = 4

(c) the least value = 3

- (d) the greatest value = -4
- Q 144. If 0 < a < 5, 0 < b < 5 and $\frac{x^2 + 5}{2} = x 2\cos(a + bx)$ is satisfied for at least one real x then the greatest value of a + b is
 - (a) π

- (b) $\frac{\pi}{2}$
- (c) 3π
- (d) 4π

- Q 145. Let $f(x) = x^2(x + 2) + x + 3$. Then
 - (a) f(-3 k) < 0 and f(-2 + k) > 0 for all k > 0
- (b) f(-3 k) > 0 and f(-2 + k) < 0 for all k > 0
- (c) f(x) = 0 has a root α such that $[\alpha] + 3 = 0$, where $[\alpha]$ is the greatest integer less than or equal to α
- (d) f(x) = 0 has exactly one root α such that $f(\alpha) + 2 = 0$, where $f(\alpha)$ is the smallest integer greater than or equal to $f(\alpha)$

Answers

1c	2a	3c	4a	5d	6b	7c	8a	9b	10a
11c	12b	13c	14a	15b	16b	17b	18a	19a	20b
21c	22c	23b	24d	25c	26b	27a	28d	29b	30d
31b	32b	33c	34a	35b	36a	37c	38c	39c	40b
41a	42b	43c	44a	45c	46a	47b	48a	49b	50b
51a	52c	53c	54a	55a	56a	57d	58b	59c	60b
61b	62b	63c	64c	65b	66b	67b	68b	69d	70c
71b	72a	73b	74c	75b	76c	77b	78b	79a	80c
81c	82b	83a	84d	85d	86b	87c	88b	89a	90c
91a	92b	93a	94c	95a	96d	97c	98d	99d	100b
101c	102b	103a	104a	105c	106b	107a	108c	109a	110b
111c	112b	113ac	114ac	115bc	116ac	117bc	118cd	119b	120bc
121ab	122ab	123c	124abc	d 125ab	126ac	127ab	128bc	129bc	130ad
131bc	132ac	133abc	134b	135bcd	136ac	137c	138c	139bc	140abcd
141ac	142ab	143ad	144c	145acd					

Complex Numbers

Choose the most appropriate option (a, b, c or d).

If a < 0, b > 0 then $\sqrt{a}.\sqrt{b}$ is equal to

Q 1.

	(a) $-\sqrt{ a .b}$	(b) $\sqrt{ a .b.i}$	(c) √ a b	(d) none of these		
Q 2.	The value of the sum	$\sum_{n=1}^{13} (i^n + i^{n+1})$, where $i = \sqrt{-1}$				
	(a) i	(b) i – 1	(c) —i	(d) 0		
Q 3.	If n ₁ , n ₂ are positive in	tegers then				
	$(1+i)^{n_1} + (1+i^3)^{n_1} + (1+i^5)^{n_2} + (1+i^7)^{n_2}$					
	is a real number if and	only if				
	(a) $n_1 = n_2 + 1$ (b) n_1	$+ 1 = n_2$ (c) $n_1 = n_2$	(d) n ₁ , n ₂ are any two po	ositive integers		
Q 4.	The complex number	$\frac{2^n}{(1+i)^{2n}} + \frac{(1+i)^{2n}}{2^n} , \frac{2^n}{(1+i)^{2n}}$	$+\frac{(1+i)^{2n}}{2^n}, n \in \mathbb{Z}$			
	(a) 0	(b) 2	(c) {1 + (-1) ⁿ } . i ⁿ	(d) none of these		
Q 5.		ntegral value of n for wh	ich $\left(\frac{1-i}{1+i}\right)^n$ is purely imag	inary with positive		
	imaginary part, is					
	(a) 1	(b) 3	(c) 5	(d) none of these		
Q 6.	If $(a + ib)^5 + \alpha + i\beta$ then	n (b + ia) ⁵ is equal to				
	(a) β + i α	(b) α - $i\beta$	(c) β - iα	(d) - α - i β		
Q 7.	If $i = \sqrt{-1}$, the number	of values of i ⁿ + i ⁻ⁿ for di	fferent $n \in \mathcal{Z}$ is			
	(a) 3	(b) 2	(c) 4	(d) 1		
Q 8.	Im(z) is equal to					
	(a) $\frac{1}{2}(z+\overline{z})i$	(b) $\frac{1}{2}(z-\overline{z})$	(c) $\frac{1}{2}(\overline{z}-z)i$	(d) none of these		
Q 9.	The value of $(1 + i)^3 + ($	$(1-i)^6$ is				
	(a) i	(b) 2(-1 + 5i)	(c) 1 – 5i	(d) none of these		

Q 10.	Taking the value of a square root with positive real part only, the value of $\sqrt{-3-4i} + \sqrt{3+4i}$ is					
	(a) 1 + i	(b) 1 – 3i	(c) 1 + 3i	(d) none of these		
Q 11.	$\sin^{-1}\left\{\frac{1}{i}(z-1)\right\}$, where	z is nonreal, can be the	angle of a triangle if			
	(a) $Re(z) = 1$, $Im(z) = 2$	(b) Re(z) = 1, $-1 \le Im(z)$	$) \le 1$ (c) Re(z) + Im(z)	z) = 0 (d) none of these		
Q 12.	If n is an odd integer,	$i = \sqrt{-1}$ then $(1 + i)^{6n} + (1$	– i) ⁶ⁿ is equal to			
	(a) 0	(b) 2	(c) -2	(d) none of these		
Q 13.	If $z_1 = 9y^2 - 4 - 10ix$, z_2	= $8y^2 - 20i$, where $z_1 = \bar{z}$	$\frac{1}{2}$, then $z = x + iy$ is equal	to		
	(a) -2 + 2i	(b) -2 \pm 2i	(c) -2 ± i	(d) none of these		
Q 14.	The complex numbers	sin x – icos 2x and cos x	– isin 2x are conjugate t	o each other for		
	(a) x = nπ	(b) x = 0	(c) $x = (2n + 1) \frac{\pi}{2}$	(d) no value of x		
Q 15.	If $z = 1 + itan \alpha$, where	$e \pi < \alpha < \frac{3\pi}{2}$, then $ z $ is	equal to			
	(a) sec α	(b) – sec α	(c) cosec α	(d) none of these		
Q 16.	If z is a complex numb	er satisfying the reaction	z + 1 = z + 2(1 + i) the	en z is		
	(a) $\frac{1}{2}(1+4i)$	(b) $\frac{1}{2}(3+4i)$	(c) $\frac{1}{2}(1-4i)$	(d) $\frac{1}{2}(3-4i)$		
Q 17.	If $(1 + i)z = (1 + i) \overline{z}$ the	n z is				
	(a) $t(1-i)$, $t \in R$	(b) $t(1 + i), t \in R$	$(c) \ \frac{t}{1+i}, t \in R^+$	(d) none of these		
Q 18.	If z ₁ , z ₂ are two nonzer	ro complex numbers suc	h that			
	$ z_1 + z_2 = z_1 $	$ + z_2 $ then amp $\frac{z_1}{z_2}$ is eq	qual to			
	(a) π	(b) -π	(c) 0	(d) none of these		
Q 19.	The complex number :	z is purely imaginary if				
	(a) zz̄ is real	(b) $z = \overline{z}$	(c) $z + \overline{z} = 0$	(d) none of these		

Q 20.	If $z = x + iy$ such that $ z $	z + 1 = z - 1 and amp	$\frac{z-1}{z+1} = \frac{\pi}{4} \text{ then}$	
	(a) $x = \sqrt{2} + 1, y = 0$	(b) $x = 0, y = \sqrt{2} + 1$	(c) $x = 0, y = \sqrt{2} - 1$	(d) $x = \sqrt{2} - 1, y = 0$
Q 21.	Let $z = \frac{\cos\theta + i\sin\theta}{\cos\theta - i\sin\theta}, \frac{\pi}{4}$	$<\theta<\frac{\pi}{2}$. Then arg z is		
	(a) 20	(b) 2θ - π	(c) π + 2 θ	(d) none of these
Q 22.	If $z = \frac{\sqrt{3} + i}{\sqrt{3} - i}$ then the form	undamental amplitude o	f z is	
	(a) $-\frac{\pi}{3}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{6}$	(d) none of these
Q 23.	If $\frac{1+2i}{2+i} = r(\cos\theta + i\sin\theta)$	θ) then		
	(a) $r = 1$, $\theta = \tan^{-1} \frac{3}{4}$	(b) $r = \sqrt{5}, \theta = \tan^{-1} \frac{4}{3}$	(c) $r = 1, \theta = \tan^{-1} \frac{4}{3}$	(d) none of these
Q 24.	If $z = x + iy$ satisfies an	np(z-1) = amp(z+3i)t	hen the value of $(x - 1)$:	y is equal to
	(a) 2:1	(b) 1:3	(c) -1 : 3	(d) none of these
Q 25.	Let z be a complex nun number of possible val		us such that z ² is purely in	maginary then the
	(a) 2	(b) 1	(c) 4	(d) infinite
Q 26.	If ω is an imaginary cul	oe root of unity then (1 +	$+\omega - \omega^2$) ⁷ equals	
	(a) 128ω	(b) -128ω	(c) $128\omega^2$	(d) $-128\omega^2$
Q 27.	If ω is a nonreal cube r	oot of unity then the exp	oression	
	$(1 - \omega)(1 - \omega^2)(1 - \omega^2)$	$(1+\omega^4)(1+\omega^8)$ is equal to	0	
	(a) 0	(b) 3	(c) 1	(d) 2
Q 28.	If $3^{49}(x + iy) = \left(\frac{3}{2} + \frac{\sqrt{3}}{2}\right)^{1/2}$	$\int_{0}^{100} and x = ky then k is$		
	(a) $-\frac{1}{3}$	(b) √3	(c) −√3	(d) $-\frac{1}{\sqrt{3}}$
O 29.	$x^{3m} + x^{3n-1} + x^{3r-2}$. where	e m. n. r. ∈ N. is divisible	bv	

	(a) $x^2 - x + 1$	(b) $x^2 + x + 1$	(c) $x^2 + x - 1$	(d) $x^2 - x - 1$
Q 30.	If $x^2 - x + 1 = 0$ then the	e value of $\sum_{n=1}^{5} \left(x^n + \frac{1}{x^n} \right)^2$ is	5	
	(a) 8	(b) 10	(c) 12	(d) none of these
Q 31.	If $1 + x^2 = \sqrt{3}x$ then $\sum_{n=1}^{24}$	$\left(x^{n} - \frac{1}{x^{n}}\right)^{2}$ is equal to		
	(a) 48	(b) -48	(c) \pm 48(ω - ω ²)	(d) none of these
Q 32.	The smallest positive in	ntegral value of n for whi	ch (1 + $\sqrt{3}i$) ^{n/2} is real is	
	(a) 3	(b) 6	(c) 12	(d) 0
Q 33.	If $i = \sqrt{-1}$, ω = nonreal	cube root of unity then		
	$\frac{(1+i)^{2n}-(1}{(1+\omega^4-\omega^2)(1-\omega^4-\omega^2)(1-\omega^4-\omega^4)(1-$	$\frac{-i)^{2n}}{-\omega^4+\omega^2}$ is equal to		
	(a) 0 if n is even		(b) o for all $n \in \mathbb{Z}$	
	(c) 2^{n-1} . i for all $n \in N$		(d) none of these	
Q 34.	If $z^2 - z + 1 = 0$ then $z^n - 1$	- z ⁻ⁿ , where n is a multip	e of 3, is	
	(a) 2(-1) ⁿ	(b) 0	(c) (-1) ⁿ⁺¹	(d) none of these
Q 35.	If ω is a nonreal cube re	oot of unity then		
	$\frac{1+2\omega+3\omega^2}{2+3\omega+\omega^2}+\frac{1}{2}$	$\frac{2 + 3\omega + \omega^2}{3 + \omega + 2\omega^2}$ is equal to		
	(a) -1	(b) 2ω	(c) 0	(d) -2ω
Q 36.	If $(x-1)^4 - 16 = 0$ then	the sum of nonreal com	plex values of x is	
	(a) 2	(b) 0	(c) 4	(d) none of these
Q 37.	If $z_r = \cos \frac{2r\pi}{5} + i\sin \frac{2r\pi}{5}$, r = 0, 1, 2, 3, 4, then	$z_1z_2z_3z_4z_5$ is equal to	
	(a) -1	(b) 0	(c) 1	(d) none of these
Q 38.	If $e^{i\theta} = \cos \theta + i\sin \theta$ the	en for the ΔABC , e^{iA} . e^{iB} .	e ^{iC} is	
	(a) —i	(b) 1	(c) -1	(d) none of these

Q 39.	If $(\sqrt{3} + i)^n = (\sqrt{3} - i)^n$, $n \in \mathbb{N}$ then the least value of n is				
	(a) 3	(b) 4	(c) 6	(d) none of these	
Q 40.	If the fourth roots of ur	nity are z_1 , z_2 , z_3 , z_4 then	$Z_1^2 + Z_2^2 + Z_3^2 + Z_4^2$ is equal t	to	
	(a) 1	(b) 0	(c) i	(d) none of these	
Q 41.	If x^3 - 1 = 0 has the nonr	eal complex roots $lpha$, eta t	hen the value of (1 + 2 $lpha$	$+\beta)^3 - (3 + 3\alpha + 5\beta)^3$ is	
	(a) -7	(b) 6	(c) -5	(d) 0	
Q 42.	If $i = \sqrt{-1}$ then $4 + 5\left(-\frac{1}{2}\right)$	$\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{334} - 3\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$	is equal to		
	(a) 1−i√3	(b) $-1+i\sqrt{3}$	(c) 4√3i	(d) –i√3	
Q 43.	If $(\sqrt{3}-i)^n=2^n$, $n\in \mathbb{Z}$, the set of integers, the	en n is a multiple of		
	(a) 6	(b) 10	(c) 9	(d) 12	
Q 44.	If $z(2 - i2\sqrt{3})^2 = i(\sqrt{3} + i)$	i) ⁴ the amplitude of z is			
	(a) $\frac{5\pi}{6}$	(b) $-\frac{\pi}{6}$	(c) $\frac{\pi}{6}$	(d) $\frac{7\pi}{6}$	
Q 45.	If z is a nonreal root of	$\sqrt[7]{-1}$ then $z^{86} + z^{175} + z^{289}$	is equal to		
	(a) 0	(b) -1	(c) 3	(d) 1	
Q 46.	If α is nonreal and α =	√1 then the value of 2 ¹¹⁺	$\alpha^{\alpha+\alpha^2+\alpha^{-2}-\alpha^{-1} }$ is equal to		
	(a) 4	(b) 2	(c) 1	(d) none of these	
Q 47.	The value of amp (i ω) +	· amp (i ω^2), where i = $\sqrt{-}$	$\overline{-1}$ and $\omega = \sqrt[3]{1}$ = nonreal,	is	
	(a) 0	(b) $\frac{\pi}{2}$	(c) π	(d) none of these	
Q 48.	If α , β be two complex	numbers then $ \alpha^2 $ + $ eta $	² is equal to		
	(a) $\frac{1}{2}(\alpha + \beta ^2 - \alpha - \beta $	²)	(b) $\frac{1}{2}(\alpha + \beta ^2 + \alpha - \beta ^2)$		
	(c) $ \alpha + \beta ^2 + \alpha - \beta ^2$		(d) none of these		

Q 49.	7. The set of values of $a \in R$ for which $x^2 + i(a - 1)x + 5 = 0$ will have a pair conjugate complex roo is					
	(a) R	(b) {1}	(c) $\{a \mid a^2 - 2a + 21 > 0\}$	(d) none of these		
Q 50.	Nonreal complex numb	ers z satisfying the equa	tion $z^3 + 2z^2 + 3z + 2 = 0$	are		
	(a) $\frac{-1 \pm \sqrt{-7}}{2}$	(b) $\frac{1+\sqrt{7}i}{2}, \frac{1-\sqrt{7}i}{2}$	(c) $-i, \frac{-1+\sqrt{7}i}{2}, \frac{-1-\sqrt{7}i}{2}$	(d) none of these		
Q 51.	For a complex number	z, the minimum value of	z + z -2 is			
	(a) 1	(b) 2	(c) 3	(d) none of these		
Q 52.	If $ z = 1$ then $\frac{1+z}{1+\overline{z}}$ is e	qual to				
	(a) z	(b) <u>z</u>	(c) $z + \overline{z}$	(d) none of these		
Q 53.	If α is a nonreal cube ro	pot of unity then $ \alpha^n $, n	$\in \frac{Z}{}$, is equal to			
	(a) 1	(b) 3	(c) 0	(d) none of these		
Q 54.	4. If z be a complex number satisfying $z^4 + z^3 + 2z^2 + z + 1 = 0$ then $ z $ is					
	(a) $\frac{1}{2}$	(b) $\frac{3}{4}$	(c) 1	(d) none of these		
Q 55.	Let $z_1 = a + ib$, $z_2 = p + iq$ ip, $\omega_2 = b + iq$ then	be two unimodular com	nplex numbers such that	Im($z_1\overline{z}_2$) = 1. If ω_1 = a +		
	(a) $Re(\omega_1\omega_2) = 1$	(b) $Im(\omega_1\omega_2) = 1$	(c) $Re(\omega_1\omega_2) = 0$	(d) Im($\omega_1 \overline{\omega}_2$) = 1		
Q 56.	If $ z_1 - 1 < 1$, $ z_2 - 2 < 1$	$< 2, z_3 - 3 < 3 \text{ then } z_1 $	+ z ₂ + z ₃			
	(a) is less than 6	(b) is more than 3	(c) is less than 12 (d) I	ies between 6 and 12		
Q 57.	If $ z-i \le 2$ and $z_0 = 5 + 1$	- 3i then the maximum v	value of $ iz + z_0 $ is			
	(a) $2 + \sqrt{31}$	(b) 7	(c) $\sqrt{31}-2$	(d) none of these		
Q 58.	If $ z = \max\{ z-1 , z \}$	+ 1 } then				
	(a) $ z_1 + \overline{z} = \frac{1}{2}$	(b) $z_1 + \overline{z} = 1$	(c) $ z_1 + \overline{z} = 1$	(d) none of these		
Q 59.	z-4 < z-2 repres	ents the region given by				
	(a) Re(z) > 0	(b) Re(z) < 0	(c) Re(z) > 2	(d) none of these		

Q 60.	If $\log_{1/2} \frac{ z ^2 + 2 z + 4}{2 z ^2 + 1} < 0$ then the region traced by z is						
	(a) z < 3	(b) 1 < z < 3	(c) z > 1	(d) z < 2			
Q 61.	$\left \frac{z-1}{z+1} \right = 1$ represents						
	(a) a circle	(b) an ellipse	(c) a straight line	(d) none of these			
Q 62.	If $2z_1 - 3z_2 + z_3 = 0$ then	n z_1 , z_2 , z_3 are represente	d by				
	(a) three vertices of a t	triangle	(b) three collinear poin	its			
	(c) three vertices of a r	rhombus	(d) none of these				
Q 63.	If A, B, C are three poin	nts in the Argand plane r	epresenting the complex	numbers z ₁ , z ₂ , z ₃ such			
	that $z_1 = \frac{\lambda z_2 + z_3}{\lambda + 1}$, where $\lambda \in R$, then the distance of A from the line BC is						
	(a) λ	(b) $\frac{\lambda}{\lambda+1}$	(c) 1	(d) 0			
Q 64.	The roots of the equat	ion $1 + z + z^3 + z^4 = 0$ are	represented by the verti	ces of			
	(a) a square	(b) an equilateral trian	gle (c) a rhombus	(d) none of these			
Q 65.	If $Re\left(\frac{z+4}{2z-i}\right) = \frac{1}{2}$ then	z is represented by a poi	nt lying on				
Q 65.	If $Re\left(\frac{z+4}{2z-i}\right) = \frac{1}{2}$ then (a) a circle		nt lying on (c) a straight line	(d) none of these			
	(a) a circle		(c) a straight line				
	(a) a circle	(b) an ellipse tor representing the com	(c) a straight line				
	(a) a circle The angle that the vec	(b) an ellipse tor representing the com	(c) a straight line				
	(a) a circle The angle that the vector direction of the real ax (a) $\frac{2\pi}{3}$ If P, P' represent the containing the second of the real axis.	(b) an ellipse tor representing the com	(c) a straight line uplex number $\frac{1}{(\sqrt{3}-i)^{25}}$ number $\frac{5\pi}{6}$	nakes with the positive $ (d) \ \frac{\pi}{6} $			
Q 66.	(a) a circle The angle that the vector direction of the real ax (a) $\frac{2\pi}{3}$ If P, P' represent the content of the circle with the circl	(b) an ellipse tor representing the consists $(b) -\frac{\pi}{6}$ omplex number z_1 and its	(c) a straight line applex number $\frac{1}{(\sqrt{3}-i)^{25}}$ note of the contract	nakes with the positive $ \text{(d) } \frac{\pi}{6} $ tively then the complex			
Q 66.	(a) a circle The angle that the vector direction of the real ax (a) $\frac{2\pi}{3}$ If P, P' represent the content of the circle	(b) an ellipse tor representing the complex $(b) - \frac{\pi}{6}$ complex number z_1 and its with PP' as a diameter is	(c) a straight line uplex number $\frac{1}{(\sqrt{3}-i)^{25}}$ n (c) $\frac{5\pi}{6}$ is additive inverse respectively. (c) $z\overline{z}_1 + \overline{z}z_1 = 0$	nakes with the positive $ \text{(d) } \frac{\pi}{6} $ tively then the complex			

	(c) vertices of a rhombus		(d) none of these		
Q 69.	69. Suppose z_1 , z_2 , z_3 are the vertices of an equilateral triangle inscribed in the circle $ z = 2$. + $\sqrt{3}i$ and z_1 , z_2 , z_3 are in the clockwise sense then				
	(a) $z_1 = 1 - \sqrt{3}i$, $z_3 = -2$	(b) $z_2 = 2$, $z_3 = 1 - \sqrt{3}i$	(c) $z_2 = -1 + \sqrt{3}i$, $z_3 = -2$	(d) none of these	
Q 70.		ne vertices of an equilate are in the anticlockwise s	eral triangle circumscribir ense then z ₂ is	ng the circle $ z = 1$. If z_1	
	(a) 1−√3i	(b) 2	(c) $\frac{1}{2}(1-\sqrt{3}i)$	(d) none of these	
Q 71.	If amp $\frac{z-1}{z+1} = \frac{\pi}{3}$ then z	represents a point on			
	(a) a straight line	(b) a circle	(c) a pair of lines	(d) none of these	
Q 72.	If the roots of $z^3 + iz^2 +$ of the triangle is	2i = 0 represent the vert	cices of a ΔABC in the Arg	gand plane then the area	
	(a) $\frac{3\sqrt{7}}{2}$	(b) $\frac{3\sqrt{7}}{4}$	(c) 2	(d) none of these	
Q 73.	The equation $z\overline{z} + (4 - 1)$	3i)z + (4 + 3i) z + 5 = 0 re	presents a circle whose i	radius is	
	(a) 5	(b) 2√5	(c) $\frac{5}{2}$	(d) none of these	
Q 74.	If z is a complex number	er such that $\left \frac{z-3i}{z+3i} \right = 1$ th	nen z lies on		
	(a) the real axis	(b) the line Im(z) = 3	(c) a circle	(d) none of these	
Q 75.			pots of unity and $\mid z-z_1$ neter then the value of λ	$ ^{2} + z - z_{2} ^{2} = \lambda$ be the is	
	(a) 4	(b) 3	(c) 2	(d) $\sqrt{2}$	
Q 76.		and the nonreal roots the Argand plane then $\boldsymbol{\lambda}$		the three vertices of an	
	(a) 1	(b) $\frac{2}{3}$	(c) 2	(d) 1	
Q 77.	The equation $ z-i +$	z + i = k, k > 0, can rep	resent an ellipse if k is		
	(a) 1	(b) 2	(c) 4	(d) none of these	

Q 78.	78. The equation $ z + i - z - i = k$ represents a hyperbola if					
	(a) -2 < k < 2	(b) k > 2	(c) 0 < k < 2	(d) none of these		
Q 79.	Let OP.OQ = 1 and le numbers 0 and z then		inear points. If O and (Q represent the complex		
	(a) $\frac{1}{z}$	(b) <u>z</u>	(c) $\frac{1}{\overline{z}}$	(d) none of these		
Q 80.	Let $z = 1 - t + i\sqrt{t^2 + t + 2}$		meter. Then locus of z in	the Argand plane is		
	(a) a hyperbola	(b) an ellipse	(c) a straight line	(d) none of these		
Q 81.	The area of the triang roots of unity, is	le whose vertices are i, o	α , β , where $i = \sqrt{-1}$ and	α , β are the nonreal cube		
	(a) $\frac{3\sqrt{3}}{2}$	(b) $\frac{3\sqrt{3}}{4}$	(c) 0	(d) $\frac{\sqrt{3}}{4}$		
	Choose the correct op	tions. One or more opti	ons may be correct.			
Q 82.	The nonzero real value	e of x for which $\frac{(1+ix)(1-ix)}{1-ix}$	is purely real is			
	(a) √2	(b) 1	(c) $-\sqrt{2}$	(d) none of these		
Q 83.	If $z_1 = \frac{1}{a+i}$, $a \neq 0$ and z_2	$z_2 = \frac{1}{1 + bi}, b \neq 0$ such that	$z_1 = \overline{z}_2$ then			
	(a) a = 1, b = 1	(b) a = -1, b = 1	(c) a = 1, b = -1	(d) none of these		
Q 84.	If z_1 , z_2 , z_3 , z_4 are roots	of the equation				
	$a_0z^4 + a_1z^3 + a_2z^2 + a_3z + a_4 = 0$					
	where a_0 , a_1 , a_2 , a_3 and	l a₄ are real, then				
	(a) $\overline{z}_1, \overline{z}_2, \overline{z}_3, \overline{z}_4$ are also	roots of the equation	(b) z_1 is equal to at least	st one of $\overline{Z}_1, \overline{Z}_2, \overline{Z}_3, \overline{Z}_4$		
	(c) $-\overline{z}_1, -\overline{z}_2, -\overline{z}_3, -\overline{z}_4$ are	e also roots of the equati	on (d) none of these			
Q 85.	If α is a complex const	ant such that $\alpha z^2 + z + \overline{\alpha}$	$\dot{z} = 0$ has a real root then			
	(a) $\alpha + \overline{\alpha} = 1$	(b) $\alpha + \overline{\alpha} = 0$	(c) $\alpha + \overline{\alpha} = -1$			
	(d) the absolute value	of the real roots is 1				
Q 86.	If amp(z_1z_2) = 0 and $ z_1 $	$ z_1 = z_2 = 1 \text{ then}$				

Q 87.	If z is a nonzero compl	ex number then	$\frac{ \bar{z} ^2}{z\bar{z}}$ is	equal to		
	(a) $\left \frac{\overline{z}}{z}\right $	(b) 1		(c) z	(d) none of these	
Q 88.	If ω is a nonreal cube r	oot of unity then	the val	ue of		
	1.(2 - ω)(2 - ω ²) + 2. (3	- ω)(3 - ω²) + +	- (n – 1)	$(n - \omega)(n - \omega^2)$ is		
	(a) real	(b) $\frac{n^2(n-1)^2}{4} - 1$	n + 1	(c) $\left\{\frac{n(n+1)^2}{2}\right\} - n$	(d) not real	
Q 89.	If z is a complex numb	er satisfying z + z	¹ = 1 the	en $z^n + z^{-n}$, $n \in \mathbb{N}$, has the	e value	
	(a) 2(-1) ⁿ when n is a m	nultiple of 3		(b) (-1) ⁿ⁻¹ when n is not	a multiple of 3	
	(c) (-1) ⁿ⁺¹ when n is a n	nultiple of 3		(d) 0 when n is not a m	ultiple of 3	
Q 90.	The value of α^{-n} + α^{-2n} ,	$n\in \textbf{N} \text{ and } \alpha \text{ is a}$	nonreal	cube root of unity, is		
	(a) 3 if n is a multiple o	of 3		(b) -1 if n is not a multi	ple of 3	
	(c) 2 if n is a multiple o	f3		(d) none of these		
Q 91.	The value of α^{4n-1} + α^{4n}	$n^{-2} + \alpha^{4n-3}$, $n \in \mathbb{N}$ a	nd α is	a nonreal fourth root of	unity, is	
	(a) 0	(b) -1		(c) 3	(d) none of these	
Q 92.	Let x be a nonreal com	plex number sati	sfying ($(x-1)^3 + 8 = 0$ then x is		
	(a) 1 + 2ω	(b) 1 - 2ω		(c) 1 - $2\omega^2$	(d) none of these	
Q 93.	If $z = \frac{1+3i}{1+i}$ then					
	(a) $Re(z) = 2Im(z)$	(b) Re(z) + 2Im(z) = 0	(c) $ z = \sqrt{5}$	(d) amp z = $tan^{-1}2$	
Q 94.	If z is different from \pm	i and z = 1 then	$\frac{z+i}{z-i}$ is			
	(a) purely real		(b) nor	nreal, whose real and im	aginary parts are equal	
	(c) purely imaginary		(d) nor	ne of these		
Q 95.	If z ₁ , z ₂ are two compe	lx numbers then				

(a) $z_1 + z_2 = 0$ (b) $z_1 z_2 = 1$ (c) $z_1 = \overline{z}_2$

	(c) $ z_1 + z_2 \ge z_1 \cdot z_2 $		(d) $ z_1 - z_2 \le z_1 + z_2 $			
Q 96.	5. Let z_1 , z_2 be two complex numbers represented by points on the circle $ z =1$ and $ z =$ respectively then					
	(a) max $ 2z_1 + z_2 = 4$		(b) min $ z_1 - z_2 = 1$			
	$(c) \left z_2 + \frac{1}{z_1} \right \le 3$		(d) none of these			
Q 97.	·	_	in the anticlockwise sense. It agonals is the origin then	f A represents the complex		
	(a) B represents the con	mplex number iz	(b) D represents the complex	number i z		
	(c) B represents the cor	nplex numberiz	(d) D represents the complex	number -i Z		
Q 98.	If $z(\overline{z+\alpha}) + \overline{z}(z+\alpha) = 0$, where $lpha$ is a co	mplex constant, then z is repr	esented by a point on		
	(a) a straight line	(b) a circle	(c) a parabola	(d) none of these		
Q 99.	If z_1 , z_2 , z_3 , z_4 are the fo	ur complex num	bers represented by the verti	ces of a quadrilateral taken		
	in order such that $z_1 - z_4 = z_2 - z_3$ and amp $\frac{z_4 - z_1}{z_2 - z_1} = \frac{\pi}{2}$ then the quadrilateral is a					
	(a) rhombus	(b) square	(c) rectangle	(d) a cyclic quadrilateral		
Q 100.	If z_0 , z_1 represent point P, Q on the locus $ z-1 =1$ and the line segment PQ subtends and angle $\pi/2$ at the point $z=1$ then z_1 is equal to					
	(a) $1+i(z_0-1)$	(b) $\frac{i}{z_0 - 1}$	(c) $1-i(z_0-1)$	(d) $i(z_0 - 1)$		
Q 101.	If $ z_1 = z_2 = z_3 = 1$ then	1 and z_1 , z_2 , z_3 and	re represented by the vertice	es of an equilateral triangle		
	(a) $z_1 + z_2 + z_3 = 0$	(b) $z_1z_2z_3 = 1$	(c) $z_1z_2 = z_2z_3 + z_3z_1 =$	0 (d) none of these		
Q 102.		-	which are such that AB.Ad line complex numbers $0, z_1, z_2$	•		
	(a) $z_1z_2 = 1$	(b) $Z_1\overline{Z}_2 = 1$	(c) $ z_1 z_2 = 1$	(d) none of these		
Q 103.	If z ₁ , z ₂ , z ₃ , z ₄ are repres	ented by the ver	tices of a rhombus taken in th	ne anticlockwise order then		

(a) $|z_1 + z_2| \le |z_1| + |z_1|$ (b) $|z_1 - z_2| \ge |z_1| - |z_2|$

(a)
$$z_1$$
- z_2 + z_3 - z_4 = 0

(b)
$$z_1 + z_2 = z_3 + z_4$$

(c) amp
$$\frac{z_2 - z_4}{z_1 - z_3} = \frac{\pi}{2}$$

(a)
$$z_1$$
- z_2 + z_3 - z_4 = 0 (b) z_1 + z_2 = z_3 + z_4 (c) $amp \frac{z_2 - z_4}{z_1 - z_3} = \frac{\pi}{2}$ (d) $amp \frac{z_1 - z_2}{z_3 - z_4} = \frac{\pi}{2}$

Q 104. If amp
$$\frac{z-2}{2z+3i} = 0$$
 and $z_0 = 3 + 4i$ then

(a)
$$z_0 \overline{z} + \overline{z}_0 z = 12$$

b)
$$z_0z + \overline{z}_0\overline{z} = 12$$

(a)
$$z_0\overline{z} + \overline{z}_0z = 12$$
 (b) $z_0z + \overline{z}_0\overline{z} = 12$ (c) $z_0\overline{z} + \overline{z}_0z = 0$

(d) none of these

Q 105. If
$$z_1 \neq z_2$$
 and $|z_1 + z_2| = \left| \frac{1}{z_1} + \frac{1}{z_2} \right|$ then

- (a) at least one of z₁.z₂ is unimodular
- (b) both z₁, z₂ are unimodular

(c) z₁.z₂ is unimodular

Q 106. Let
$$z_1 = \frac{(\sqrt{3}+i)^2.(1-\sqrt{3}i)}{1+i}, z_2 = \frac{(1+\sqrt{3}i)^2.(\sqrt{3}-i)}{1-i}$$
. Then

(a)
$$|z_1| = |z_2|$$

(a)
$$|z_1| = |z_2|$$
 (b) amp $z_1 + \text{amp } z_2 = 0$ (c) $3|z_1| = |z_2|$

(d)
$$3amp z_1 + amp z_2 = 0$$

Q 107. If
$$|z_1 + z_2| = |z_1 - z_2|$$
 then

(a)
$$|amp z_1 - amp z_2| = \frac{\pi}{2}$$

(b)
$$|amp z_1 - amp z_2| = \pi$$

(c)
$$\frac{Z_1}{Z_2}$$
 is purely real

(d)
$$\frac{z_1}{z_2}$$
 is purely imaginary

Q 108. If
$$|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$$
 then

(a)
$$\frac{Z_1}{Z_2}$$
 is purely real

(a)
$$\frac{z_1}{z_2}$$
 is purely real (b) $\frac{z_1}{z_2}$ is purely imaginary (c) $z_1\overline{z}_2 + z_2\overline{z}_1 = 0$ (d) $amp \frac{z_1}{z_2} = \frac{\pi}{2}$

(c)
$$Z_1\overline{Z}_2 + Z_2\overline{Z}_1 = 0$$

(d) amp
$$\frac{z_1}{z_2} = \frac{\pi}{2}$$

Answers

1b	2b	3d	4c	5b	6a	7a	8c	9b	10d
11b	12a	13b	14d	15b	16c	17a	18c	19c	20b
21a	22b	23a	24b	25c	26d	27b	28d	29b	30a
31b	32b	33a	34b	35b	36a	37c	38c	39c	40b
41a	42c	43d	44b	45b	46a	47c	48b	49b	50a
51b	52a	53a	54c	55d	56c	57b	58c	59d	60a
61c	62b	63d	64b	65c	66d	67a	68a	69a	70d
71b	72c	73b	74a	75b	76b	77c	78a	79c	80a
81d	82ac	83c	84ab	85acd	86bc	87ab	88ab	89ab	90bc
91b	92bc	93ac	94c	95ab	96abc	97ad	98b	99cd	100ac
101ab	102bc	103ac	104b	105c	106ad	107ad	108bcd		

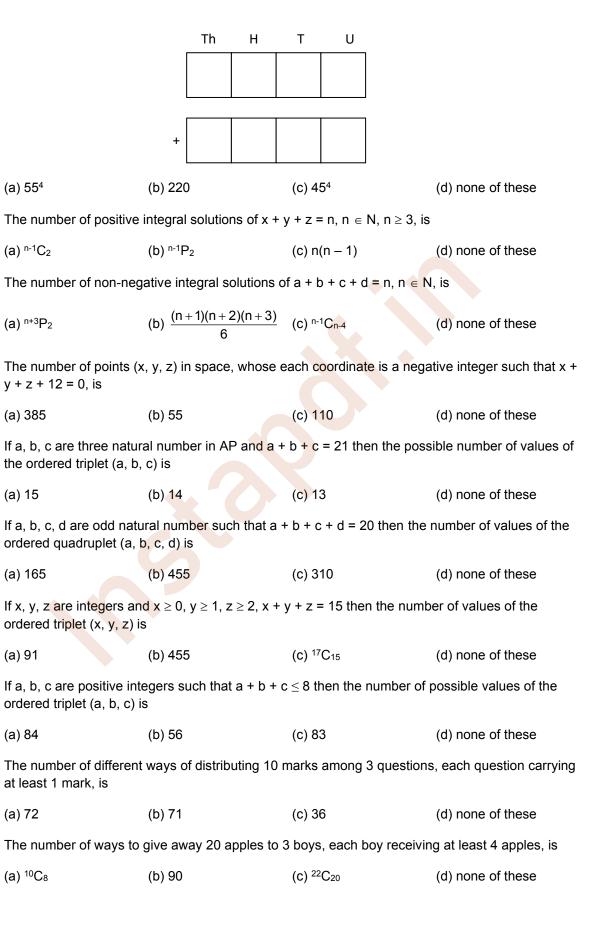
Permutation and Combination

Choose the most appropriate option (a, b, c or d).

Q 1.	If ${}^{n}C_{r-1} = 56$, ${}^{n}C_{r} = 28$ ar	$C_{r-1} = 56$, ${}^{n}C_{r} = 28$ and ${}^{n}C_{r+1} = 8$ then r is equal to					
	(a) 8	(b) 6	(c) 5	(d) none of these			
Q 2.	The value of ${}^{20}C_{31} + \sum_{j=0}^{10}$	$^{40+j}C_{10+j}$ is equal to					
	(a) ⁵¹ C ₂₀	(b) 2. ⁵⁰ C ₂₀	(c) 2. ⁴⁵ C ₁₅	(d) none of these			
Q 3.		number of arrangements s. The number of boys in	of 4 boys is 12 times the the group is	e number of			
	(a) 10	(b) 8	(c) 6	(d) none of these			
Q 4.	The value of $\sum_{r=1}^{10} r.^r P_r$ is						
	(a) ¹¹ P ₁₁	(b) ¹¹ P ₁₁ – 1	(c) ¹¹ P ₁₁ + 1	(d) none of these			
Q 5.	5. From a group of persons the number of ways of selecting 5 persons is equal to that of 8 person The number of persons in the group is						
	(a) 13	(b) 40	(c) 18	(d) 21			
Q 6.		rational numbers x such	that $0 < x < 1$ and $x = \frac{p}{q}$, where p, q \in {1, 2, 3, 4,			
	5, 6}, is						
	(a) 15	(b) 13	(c) 12	(d) 11			
Q 7.	The total number of 9-d	ligit numbers of different	digits is				
	(a) 10(9!)	(b) 8(9!)	(c) 9(9!)	(d) none of these			
Q 8.	The number of 6-digit n digits occupy odd place		e with the digits 0, 1, 2, 3	3, 4 and 5 so that even			
	(a) 24	(b) 36	(c) 48	(d) none of these			
Q 9.	The number of ways in consecutive, is	which 6 men can be arra	anged in a row so that thi	ree particular men are			
	(a) ⁴ P ₄	(b) ${}^4P_4 \times {}^3P_3$	(c) ${}^{3}P_{3} \times {}^{3}P_{3}$	(d) none of these			
Q 10.							

	(a) 420	(b) 120	(c) 210	(d) none of these		
Q 11.	The total number of 5-d is	ligit numbers of different	digits in which the digit in	n the middle is the largest		
	(a) $\sum_{n=4}^{9} {}^{n}P_{4}$	(b) 33(3!)	(c) 30(3!)	(d) none of these		
Q 12.	_	le by 3 is to be formed unber of ways in which thi	sing the digits 0, 1, 2, 3, is can be done is	4 and 5 without		
	(a) 216	(b) 600	(c) 240	(d) 3125		
Q 13.	Let A = {x x is a prime numerator and denomine		e number of different rati	onal numbers whose		
	(a) 90	(b) 180	(c) 91	(d) none of these		
Q 14.	The total number of wa two '-' signs occur toge		ur '–' sig <mark>n</mark> s can be arranç	ged in a line such that no		
	(a) $\frac{7!}{3!}$	(b) $6! \times \frac{7!}{3!}$	(c) 35	(d) none of these		
Q 15.	The total number of wo that no vowel is between		writing the letters of the	word PARAMETER so		
	(a) 1440	(b) 1800	(c) 2160	(d) none of these		
Q 16.		s of f <mark>our d</mark> iffer <mark>ent</mark> di <mark>git</mark> s th mbers are divisible by 4,	hat can be formed from this	he digits of the number		
	(a) 36	(b) 48	(c) 12	(d) 24		
Q 17.	Let S be the set of all functions from the set A to the set A. If $n(A) = k$ then $n(S)$ is					
	(a) k!	(b) k ^k	(c) 2 ^k – 1	(d) 2 ^k		
Q 18.	Let A be the set of 4-digit numbers $a_1a_2a_3a_4$ where $a_1 > a_2 > a_3 > a_4$ then n(A) is equal to					
	(a) 126	(b) 84	(c) 210	(d) none of these		
Q 19.	The number of numbers	s divisible by 3 that can b	pe formed by four differen	nt even digits is		
	(a) 18	(b) 36	(c) 0	(d) none of these		
Q 20.	The number of 5-digit e	ven number that can be	made with the digit 0, 1,	2 and 3 is		
	(a) 384	(b) 192	(c) 768	(d) none of these		
Q 21.	The number of 4-digit new digits are identical,		le with the digit 1, 2, 3, 4	and 5 in which at least		

	(a) $4^5 - 5!$	(b) 505	(c) 600	(d) none of these	
Q 22.	The number of words the vowels and consonants	nat can be made by rearr alternate is	anging the letters of the	word APURBA so that	
	(a) 18	(b) 35	(c) 36	(d) none of these	
Q 23.		nat can be made by writin nd ends with a constant,	=	word CALCULATE such	
	(a) $\frac{5(7!)}{2}$	(b) $\frac{3(7!)}{2}$	(c) 2(7!)	(d) none of these	
Q 24.			•	its in the first four places es are greater than that in	
	(a) 2(4!)	(b) (4!) ²	(c) 8!	(d) none of these	
Q 25.	In the decimal system of is greater than the digit		r of 6-digit numbers in wh	nich the digit in any place	
	(a) 210	(b) 84	(c) 126	(d) none of these	
Q 26.	The number of 5-digit n	umbers in which no two	consecutive digits are ide	entical is	
	(a) $9^2 \times 8^3$	(b)			
Q 27.	In the decimal system of is divisible by 5 is	of numeration the number	of 6-digit numbers in wh	nich the sum of the digits	
	(a) 180000	(b) 540000	(c) 5×10^5	(d) none of these	
Q 28.	The sum of all the number 3 is	pers of four different digit	s that can be made by u	sing the digits 0, 1, 2 and	
	(a) 26664	(b) 39996	(c) 38664	(d) none of these	
Q 29.	A teacher takes 3 children from her class to the zoo at a time as often as she can, but she does not take the same three children to the zoo more than once. She finds that she goes to the zoo 84 times more than a particular child goes to the zoo. The number of children in her class is				
	(a) 12	(b) 10	(c) 60	(d) none of these	
Q 30.	· ·	Irilateral. 3, 4, 5 and 6 po er of triangles with vertic		ides AB, CD and DA	
	(a) 270	(b) 220	(c) 282	(d) none of these	
Q 31.	·	plane of which no three circles that can be draw	•		
	(a) 116	(b) 120	(c) 117	(d) none of these	


Q 32.	In a polygon th	ne number of diagor	nals is 54. The number of	sides of the polygon is	
	(a) 10	(b) 12	(c) 9	(d) none of these	
Q 33.		_	re concurrent. If the total re 70 then the number of o	number of points of intersection of diagonals of polygon is	
	(a) 20	(b) 28	(c) 8	(d) none of these	
Q 34.		•	that no two of them are pant points at which these line	arallel and no three of them are nes will cut is	
	(a) $\sum_{k=1}^{n-1} k$	(b) n(n -1)	(c) n ²	(d) none of these	
Q 35.	The number of is 110. Then n	-	pe formed with 10 points a	as vertices, n of them being collinear,	
	(a) 3	(b) 4	(c) 5	(d) 6	
Q 36.			lines. If any p poi <mark>nts</mark> are to n vertices at these <mark>point</mark> s i	aken on each of the lines, the	
	(a) 3p ² (p – 1)	+ 1 (b) 3p ² (p	$-1)$ (c) $p^2(4p-$	3) (d) none of these	
Q 37.	draw for a team the same fored	m. A number of peo cast for the series of	ple forec <mark>ast the res</mark> ult of e	. A match ends in a win or loss or each match and no two people make roup of people in which one person where n is	
	(a) 81	(b) 243	(c) 486	(d) none of these	
Q 38.	•		nd 2 red balls, all the balls ining balls of all the colou	being different. The number of rs is	
	(a) 42(4!)	(b) $2^6 \times 4$! (c) $(2^6 - 1)$	(4!) (d) none of these	
Q 39.			e same wattage, each hav nt amounts of illumination	ving a separate switch. The number of is	
	(a) 12 ² – 1	(b) 2 ¹²	(c) 2 ¹² – 1	(d) none of these	
Q 40.			•	ore papers than the number of papers ays in which he can be unsuccessful	
	(a) 255	(b) 256	(c) 193	(d) 319	
Q 41.	. ,	f 5-digit numbers tha	, ,	(d) 319 digits 1 and 2 and in which at least	

Q 42.				nber of maximum candidates oter can be 62 then the number
	(a) 7	(b) 5	(c) 6	(d) none of these
Q 43.	The total number of value of n is	of selections of at most n	things from (2n + 1) diffe	erent things is 63. Then the
	(a) 3	(b) 2	(c) 4	(d) none of these
Q 44.		The number of subsets	of the set A = {1, 2, 3,	, p} having m, n as the least
	(a) 2 ^{n-m-1} – 1	(b) 2 ^{n-m-1}	(c) 2 ^{n-m}	(d) none of these
Q 45.		ys in which n different pr at most n – 1 prizes, is	izes can be distributed a	mong m(<n) each="" if="" is<="" persons="" td=""></n)>
	(a) n ^m – n	(b) m ⁿ	(c) mn	(d) none of these
Q 46.	The number of posshows an odd num		ow of n ordinary dice in w	hich at least one of the dice
	(a) 6 ⁿ – 1	(b) 3 ⁿ – 1	(c) $6^n - 3^n$	(d) none of these
Q 47.	The number of diff	ferent 6-digit numbers the	at can be formed using the	ne three digits 0, 1 and 2 is
	(a) 3 ⁶	(b) 2 × 3 ⁵	(c) 3 ⁵	(d) none of these
Q 48.	The number of diff 4 elements, is	ferent matrices that can b	pe formed with elements	0, 1, 2 or 3 each matrix having
	(a) 3×2^4	(b) 2×4^4	(c) 3×4^4	(d) none of these
Q 49.		n(≥3) distinct elements. T coordinates are equal is		y, z) of the elements of A in
	(a) ⁿ P ₃	(b) $n^3 - {}^nP_3$	(c) $3n^2 - 2n$	(d) $3n^2(n-1)$
Q 50.	The number of diff	ferent pairs of word (☐☐	□□□) that can be ma	ade with the letters of the word
	(a) 828	(b) 1260	(c) 396	(d) none of these
Q 51.	Total number of 6-	-digit numbers in which a	ll the odd digits and only	odd digits appear, is
	(a) $\frac{5}{6}$ (6!)	(b) 6!	(c) $\frac{1}{2}$ (6!)	(d) none of these
Q 52.	The number of div	risors of the form 4n + 2 ($(n \ge 0)$ of the integer 240	is
	(a) 4	(b) 8	(c) 10	(d) 3

Q 53.	In the next World Cup of cricket there will be 12 teams, divided equally in two groups. Teams of each group will play a match against each other. From each group 3 top teams will quality for the next round. In this round each team will play against others once. Four top teams of this round will qualify for the semifinal round, where each team will play against the others once. Two top teams of this round will go to the final round, where they will play the best of three matches. The minimum number of matches in the next World Cup will be				
	(a) 54	(b) 53	(c) 38	(d) none of these	
Q 54.		ways in which 8 persons B there are always two p	s can stand in a row so to persons, is	hat between two	
	(a) 60(5!)	(b) 15(4!) × (5!)	(c) 4! × 5!	(d) none of these	
Q 55.			a committee of four men n no couple finds a place		
	(a) 10	(b) 12	(c) 14	(d) 16	
Q 56.	<u> </u>	6 ladies a committee of f n be formed so that gent	ive is to <mark>be s</mark> elected. The tle <mark>men are in m</mark> ajority is	e number of ways in	
	(a) 66	(b) 156	(c) 60	(d) none of these	
Q 57.	7. There are 20 questions in a question paper. If no two students solve the same combination of questions but solve equal number of questions then the maximum number of students who appeared in the examination is				
	(a) ²⁰ C ₉	(b) ²⁰ C ₁₁	(c) ²⁰ C ₁₀	(d) none of these	
Q 58.		digit positive numbers at for which this is possible	re to be formed using on e is	ly the digits 2, 5 and 7.	
	(a) 6	(b) 7	(c) 8	(d) 9	
Q 59.	The total number of inte	gral solutions for (x, y, z) such that xyz = 24 is		
	(a) 36	(b) 90	(c) 120	(d) none of these	
Q 60.	The number of ways in places are always occu		ord ARTICLE can be rea	arranged so that the even	
	(a) 576	(b) ${}^4C_3 \times (4!)$	(c) 2(4!)	(d) none of these	
Q 61.	A cabinet of ministers consists of 11 ministers, one minister being the chief minister. A meeting is to be held in a room having a round table and 11 chairs round it, one of them being meant for the chairman. The number of ways in which the ministers can take their chairs, the chief minister occupying the chairman's place, is				
	(a) $\frac{1}{2}(10!)$	(b) 9!	(c) 10!	(d) none of these	

Q 62.	The number of ways in which a couple can sit around a table with 6 guests if the couple take consecutive seats is				
	(a) 1440	(b) 720	(c) 5040	(d) none of these	
Q 63.		which 20 different pearls 0 pearls of each colour,	s of two colours can be s is	et alternately on a	
	(a) 9! × 10!	(b) 5(9!) ²	(c) (9!) ²	(d) none of these	
Q 64.	If r > p > q, the number identical and q other th		f p + q things taking r at a	a time where p things are	
	(a) p + q – r	(b) p + q – r + 1	(c) $r - p - q + 1$	(d) none of these	
Q 65.	_	3 apples, 2 oranges and least one fruit of each kir	1 each of 3 other verieting is	es of fruits. The number	
	(a) 10!	(b) 9!	(c) 4!	(d) none of these	
Q 66.	The number of proper of	divisors of 2^p . 6^q . 15^r is			
	(a) (p + q + 1)(q + r + 1)(r + 1)	(b) $(p + q + 1)(q + r + 1)$)(r + 1) – 2	
	(c) $(p + q)(q + r)r - 2$		(d) none of these		
Q 67.	The number of proper of	divisors of 1800 whi <mark>ch</mark> ar	re also divisible by 10, is		
	(a) 18	(b) 34	(c) 27	(d) none of these	
Q 68.	The number of odd pro	per divisors of 3 ^p . 6 ^m . 2	1 ⁿ is		
	(a) (p + 1)(m + 1)(n + 1) – 2	(b) (p + m + n + 1)(n +	1) – 1	
	(c) $(p + 1)(m + 1)(n + 1)$) – 1	(d) none of these		
Q 69.	The number of even pr	oper divisors of 1008 is			
	(a) 23	(b) 24	(c) 22	(d) none of these	
Q 70.			students gave wrong ans nswers given is 2047 the	swers to i questions where n n is	
	(a) 12	(b) 11	(c) 10	(d) none of these	
Q 71.	The number of ways to than A and C gets 2 me	_	to three persons A, B, C	so that B gets 1 more	
	(a) $\frac{16!}{4!5!7!}$	(b) 4! 5! 7!	(c) $\frac{16!}{3!5!8!}$	(d) none of these	
Q 72.	The number of ways to distribute 32 different things equally among 4 persons is				

	(a) $\frac{32!}{(8!)^3}$	(b) $\frac{32!}{(8!)^4}$	(c) $\frac{1}{4}(32!)$	(d) none of these		
Q 73.	If 3n different things can be equally distributed among 3 persons in k ways then the number of ways to divide the 3n things in 3 equal groups is					
	(a) k × 3!	(b) $\frac{k}{3!}$	(c) (3!) ^k	(d) none of these		
Q 74.	•	n different books, n different books, n different books, n	·	pencils. The number of		
	(a) 2 ^{m+n+p} – 1		(b) (m + 1)(n + 1)(p +	1) –1		
	(c) 2 ^{m+n+p}		(d) none of these			
Q 75.	The number of 6-digit r	numbers that can be mad	de with the digits 1, 2, 3	and 4 and having exactly		
	(a) 480	(b) 540	(c) 1080	(d) none of these		
Q 76.	The number of words or repetition being allowed	of four letters containing of d, is	equal number of vowels	and consonants,		
	(a) 105 ²	(b) 210 × 243	(c) 105 × 243	(d) none of these		
Q 77.	The number of ways in box remains empty is	which 6 different balls c	an be put in two boxes o	of different sizes so that no		
	(a) 62	(b) 64	(c) 36	(d) none of these		
Q 78.	same size of each varie	nree varieties of perfume ety in his stock. There ar playing the three varietie	e 5 places in a row in his	s showcase. The number		
	(a) 6	(b) 50	(c) 150	(d) none of these		
Q 79.	The number of arrange	ments of the letters of the	e word BHARAT taking	3 at a time is		
	(a) 72	(b) 120	(c) 14	(d) none of these		
Q 80.	-	fill each of the four cells nber is 10 and the sums				
	(a) 2! × 2!	(b) 4!				
	(c) 2(4!)	(d) none of these				
Q 81.	different ways in which		by digits so that the sum	with digits. The number of of the numbers formed is		

(a) 55^4

(a) n-1C₂

(a) $^{n+3}P_2$

(a) 385

(a) 15

(a) 165

(a) 91

(a) 84

(a) 72

(a) ${}^{10}C_8$

Q 83.

Q 84.

Q 85.

Q 86.

Q 88.

Q 89.

Q 90.

- Q 101. Let a = i + j + k and let r be a variable vector such that r = i + j + k are positive integers. If r = i + j + k and let r = i + k a 12 then the number of values of r is
 - (a) ${}^{12}C_9 1$
- (b) ${}^{12}C_3$
- (c) ${}^{12}C_9$
- (d) none of these
- Q 102. The total number of ways in which a beggar can be given at least one rupee from four 25-paisa coins, three 50-paisa coins and 2 one-rupee coins, is
 - (a) 54
- (b) 53

- (d) none of these
- Q 103. For the equation x + y + z + w = 19, the number of positive integral solutions is equal to
 - (a) the number of ways in which 15 identical things can be distributed among 4 persons
 - (b) the number of ways in which 19 identical things can be distributed among 4 persons
 - (c) coefficient of x^{19} in $(x^0 + x^1 + x^2 + + x^{19})^4$ (b) coefficient of x^{19} in $(x + x^2 + x^3 + + x^{19})^4$

Answer

1b	2a	3c	4b	5a	6d	7c	8a	9b	10 d
11d	12 a	13c	14c	15b	16a	17b	18c	19b	20a
21b	22c	23 a	24b	25b	26c	27a	28c	29b	30d
31c	32b	33 a	34a	35c	36c	37b	38a	39c	40b
41a	42c	43a	44b	45d	46c	47b	48c	49c	50b
51a	52a	53b	54a	55d	56a	57c	58b	59c	60a
61c	62a	63b	64b	65c	66b	67a	68b	69a	70b
71a	72b	73b	74 a	75c	76b	77a	78 c	79 a	80d
81d	82a	83b	84b	85c	86a	87a	88b	89c	90a
91a	92bc	93ac	94cd	95abc	96a	97b	98bc	99a	100ad
101bc	102a	103ad							

Determinants and Cramer's Rule

Choose the most appropriate option (a, b, c or d).

Q 1. If
$$\begin{vmatrix} a+x & a & x \\ a-x & a & x \\ a-x & a & -x \end{vmatrix} = 0 \text{ then } x \text{ is}$$

(a) 0

(b) a

(c) 3

(d) 2a

Q 2.
$$\begin{vmatrix} 0 & p-q & p-r \\ q-p & 0 & q-r \\ r-p & r-q & 0 \end{vmatrix}$$
 is equal to

(a) p + q + r (b) 0

Q 3. If
$$a \neq b \neq c$$
 such that $\begin{vmatrix} a^3 - 1 & b^3 - 1 & c^3 - 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = 0$ then

(a) ab + bc + ca = 0 (b) a + b + c = 0

(c) abc = 1

(d) a + b + c = 1

Q 4.
$$\begin{vmatrix} 1+x & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+x \end{vmatrix}$$
 is equal to

(a) $x^2(x + 3)$

(b) $3x^3$

(c) 0

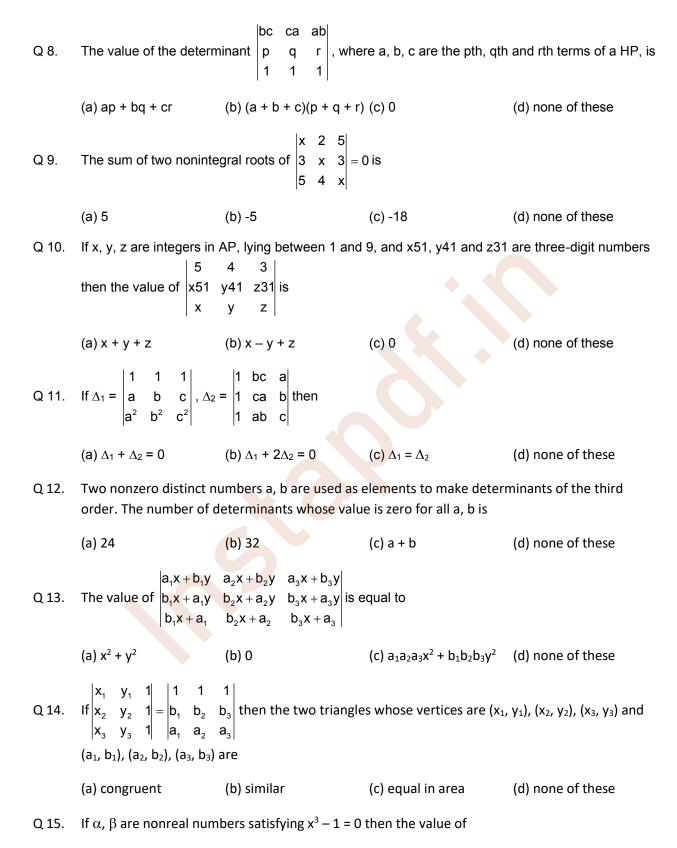
(d) x^3

Q 5. If
$$\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + iy ther$$

(a) x = 3, y = 1

(b) x = 1, y = 3 (c) x = 0, y = 3 (d) x = 0, y = 0

Q 6. The determinant
$$\begin{vmatrix} xp+y & x & y \\ yp+z & y & z \\ 0 & xp+y & yp+z \end{vmatrix} = 0$$
 for all $p \in R$ if


(a) x, y, z are in AP (b) x, y, z are in GP (c) x, y, z are in HP

(d) xy, yz, zx are in AP

Q 7. The determinant
$$\begin{vmatrix} a & a+d & a+2d \\ a^2 & (a+d)^2 & (a+2d)^2 \\ 2a+3d & 2(a+d) & 2a+d \end{vmatrix} = 0$$
. Then

(a) d = 0

(b) a + d = 0 (c) d = 0 or a + d = 0 (d) none of these

$$\begin{vmatrix} \lambda+1 & \alpha & \beta \\ \alpha & \lambda+\beta & 1 \\ \beta & 1 & \lambda+\alpha \end{vmatrix}$$
 is equal to

(a) 0

(b) λ^3

(c) $\lambda^3 + 1$

(d) none of these

Q 16. The value of $\begin{vmatrix} ^{10}C_4 & ^{10}C_5 & ^{11}C_m \\ ^{11}C_6 & ^{11}C_7 & ^{12}C_{m+2} \\ ^{12}C_8 & ^{12}C_9 & ^{13}C_{m+4} \end{vmatrix}$ is equal to zero when m is

(a) 6

(b) 4

(c) 5

(d) none of these

Q 17. If x > 0 and $\neq 1$, y > 0 and $\neq 1$, z > 0 and $\neq 1$ then the value of

$$\begin{vmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 1 & \log_y z \\ \log_z x & \log_z y & 1 \end{vmatrix}$$

(a) 0

(b) 1

(c) -1

(d) none of these

Q 18. The value of $\begin{vmatrix} 1 & 1 & 1 \\ (2^x + 2^{-x})^2 & (3^x + 3^{-x})^2 & (5^x + 5^{-x})^2 \\ (2^x - 2^{-x})^2 & (3^x - 3^{-x})^2 & (5^x - 5^{-x})^2 \end{vmatrix}$ is

(a) 0

(b) 30^x

(c) 30^{-x}

(d) none of these

Q 19. The value of the determinant $\begin{vmatrix} {}^5C_0 & {}^5C_3 & 14 \\ {}^5C_1 & {}^5C_4 & 1 \\ {}^5C_2 & {}^5C_5 & 1 \end{vmatrix}$ is

(a) 0

(b) - (6!)

(c) 80

(d) none of these

Q 20. cos C tan A 0 sinB 0 -tan A has the value 0 sinB cos C

(a) 0

(b) 1

(c) sinA sinB cos C

(d) none of these

Q 21. The value of $\begin{vmatrix} x & x^2 - yz & 1 \\ y & y^2 - zx & 1 \\ z & z^2 - xy & 1 \end{vmatrix}$ is

(a) 1

(b) -1

(c) 0

(d) - xyz

Q 22. If $\sqrt{-1} = i$, and ω is a nonreal cube root of unity then the value of

$$\begin{vmatrix} 1 & \omega^2 & 1+i+\omega^2 \\ -i & -1 & -1-i+\omega \\ 1-i & \omega^2-1 & -1 \end{vmatrix}$$
 is equal to

(a) 1

(b) i

(c) ω

(d) 0

Q 23. If
$$f(x) = \begin{vmatrix} 1 & x & x+1 \\ 2x & x(x-1) & x(x+1) \\ 3x(x-1) & x(x-1)(x-2) & x(x^2-1) \end{vmatrix}$$
 then f(100) is equal to

(a) 0

(h) 1

(c) 100

(d) -100

Q 24. The value of
$$\begin{vmatrix} i^m & i^{m+1} & i^{m+2} \\ i^{m+5} & i^{m+4} & i^{m+3} \\ i^{m+6} & i^{m+7} & i^{m+8} \end{vmatrix}, \text{ where } i = \sqrt{-1} \text{ , is }$$

(a) 1 if m is a multiple of 4

(b) 0 for all real m

(c) -i if m is a multiple of 3

(d) none of these

Q 25. If
$$\Delta_1 = \begin{vmatrix} 7 & x & 2 \\ -5 & x+1 & 3 \\ 4 & x & 7 \end{vmatrix}$$
, $\Delta_2 = \begin{vmatrix} x & 2 & 7 \\ x+1 & 3 & -5 \\ x & 7 & 4 \end{vmatrix}$ then $\Delta_1 - \Delta_2 = 0$ for

(a) x = 2

(b) all real x

(c) x = 0

(d) none of these

Q 26. If
$$\Delta_1 = \begin{vmatrix} 10 & 4 & 3 \\ 17 & 7 & 4 \\ 4 & -5 & 7 \end{vmatrix}$$
, $\Delta_2 = \begin{vmatrix} 4 & x+5 & 3 \\ 7 & x+12 & 4 \\ -5 & x-1 & 7 \end{vmatrix}$

such that $\Delta_1 + \Delta_2 = 0$ then

(a) x = 5

(b) x has no real value (c) x = 0

(d) none of these

Q 27. Let
$$\begin{vmatrix} \lambda^2 + 3\lambda & \lambda - 1 & \lambda + 3 \\ \lambda + 1 & -2\lambda & \lambda - 4 \\ \lambda - 3 & \lambda + 4 & 3\lambda \end{vmatrix} = p\lambda^4 + q\lambda^3 + r\lambda^2 + s\lambda + t$$

be an identity in λ , where p, q, r, s, t are independent of λ . Then the value of t is

(a) 4

(b) (

(c) 1

Q 28. Let
$$\begin{vmatrix} 1+x & x & x^2 \\ x & 1+x & x^2 \\ x^2 & x & 1+x \end{vmatrix} = ax^5 + bx^4 + cx^3 + dx^2 + \lambda x + \mu$$

	(a) 3	(b) 2	(c) 4	(d) none of these
ე 29.		rem it is found that b + c,	c + a and a + b are three	factors of the
		a+b $a+c-2b$ $b+c$. The other fac c+b $-2c$	tor in the value of the d	eterminant is
	(a) 4	(b) 2	(c) a + b + c	(d) none of these
ე 30.	If the determinant s	os 2x sin² x cos 4x in² x cos 2x cos² x os 4x cos² x cos 2x	xpanded in powers of sir	n x then the constant
	term in the expansion	n is		
	(a) 1	(b) 2	(c) -1	(d) none of these
ე 31.	If $\Delta(x) = \begin{vmatrix} 1 & \cos x \\ 1 + \sin x & \cos x \\ \sin x & \sin x \end{vmatrix}$	$\begin{vmatrix} 5x & 1-\cos x \\ 5x & 1+\sin x-\cos x \end{vmatrix}$ then \leftarrow	$-\int_{0}^{\pi/2} \Delta(x) dx \text{ is equal to}$	
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) O	(d) $-\frac{1}{2}$
ე 32.	If $i = \sqrt{-1}$ and $\sqrt[4]{1} = \alpha$,	$\beta, \gamma, \delta \text{ then } \begin{vmatrix} \alpha & \beta & \gamma & \delta \\ \beta & \gamma & \delta & \alpha \\ \gamma & \delta & \alpha & \beta \\ \delta & \alpha & \beta & \gamma \end{vmatrix}$	is equal to	
	(a) i	(b) —i	(c) 1	(d) 0
ე 33.	The roots of $ \begin{vmatrix} x & a & b \\ \lambda & x & b \\ \lambda & \mu & x \\ \lambda & \mu & v \end{vmatrix} $	1 1 = 0 are independent o	f	
	(a) λ, μ, ν	(b) a, b	(c) λ, μ, ν, a, b	(d) none of these
Q 34.	The value of 4 4 3 5 5 5 6 6 6 6	0 0 0 0 0 0 3 0 0 is 5 4 0 5 6 5		

be an identity in x, where a, b, c, d, λ , μ are independent of x. Then the value of λ is

	(a) 6!	(b) 5!	(c) 1.2 ² . 3. 4 ³ . 5 ⁴ . 6 ⁴	(d) none of these
Q 35.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} ac \\ bc \\ + b^2 \end{vmatrix}$ = square of a determinant	minant Δ of the third ord	er then Δ is equal to
	(a) $\begin{vmatrix} 0 & c & b \\ c & 0 & b \\ b & a & 0 \end{vmatrix}$	(b) a b c b c c c a c a b	(c) $\begin{vmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & -a & 0 \end{vmatrix}$	(d) none of these
Q 36.	The system of equation b, c are in	n ax + 4y + z = 0, bx + 3y -	+ z = 0, cx + 2y + z = 0 has	s nontrivial solutions if a
	(a) AP	(b) GP	(c) HP	(d) none of these
Q 37.	If the equations a(y + z nontrivial solutions the		+ y) = z, where a ≠ -1, b ≠	± -1, c ≠ -1, admit of
	$(1+a)^{-1}+(1+b)^{-1}$	$(1 + (1 + c)^{-1})$ is		
	(a) 2	(b) 1	(c) $\frac{1}{2}$	(d) none of these
Q 38.	The system of equation	ns		
	2x - y + z = 0			
	x - 2y + z = 0			
	$\lambda x - y + 2z = 0$			
	has infinite number of	nontrivial solutions for		
	(a) λ = 1	(b) $\lambda = 5$	(c) $\lambda = -5$	(d) no real value of $\boldsymbol{\lambda}$
Q 39.	The equations $x + y + z$ triplet (x, y, z) if	= 6, x + 2y + 3z = 10, x +	2y + mz = n give infinite	number of values of the
	(a) $m = 3, n \in R$	(b) $m = 3$, $n \ne 10$	(c) m = 3, n = 10	(d) none of these
Q 40.	The system of equation	ns 2x + 3y = 8, 7x – 5y + 3	$8 = 0$, $4x - 6y + \lambda = 0$ is	
	(a) 6	(b) 8	(c) -8	(d) -6

Q 41. If the system of equations

ax + by + c = 0

$$bx + cy + a = 0$$

$$cx + ay + b = 0$$

has a solution then the system of equations

$$(b + c)x + (c + a)y + (a + b)z = 0$$

$$(c + a)x + (a + b)y + (b + c)z = 0$$

$$(a + b)x + (b + c)y + (c + a)z = 0$$

has

(a) only one solution

- (b) no solution
- (c) infinite number of solutions
- (d) none of these

Choose the correct options. One or more options may be correct.

Q 42. Let $\{\Delta_1, \Delta_2, \Delta_3, \ldots, \Delta_k\}$ be the set of third order determinants that can be made with the distinct nonzero real numbers a₁, a₂, a₃,...., a₉. Then

(b)
$$\sum_{i=1}^k \Delta_i = 0$$

- (c) at least one $\Delta_{\rm l}$ = 0 (d) none of these

Q 43. $\begin{vmatrix} x^{2} & (y+z)^{2} & yz \\ y^{2} & (z+x)^{2} & zx \\ z^{2} & (x+y)^{2} & xy \end{vmatrix}$ is divisible by

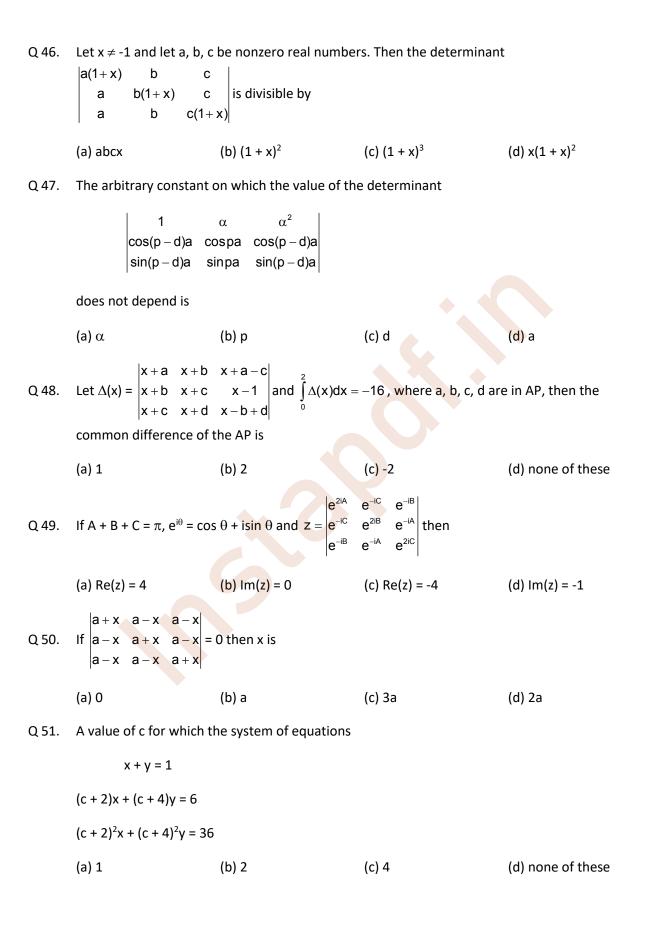
(a)
$$x^2 + y^2 + z^2$$

(b)
$$x - y$$

(c)
$$x - y - z$$
 (d) $x + y + z$

- - (a) exactly two distinct roots

(b) one pair of equal real roots


(c) modulus of each root 1

- (d) three pairs of equal roots
- Let $f(n) = \begin{bmatrix} n & n+1 & n+2 \\ {}^nP_n & {}^{n+1}P_{n+1} & {}^{n+2}P_{n+2} \\ {}^nC_n & {}^{n+1}C_{n+1} & {}^{n+2}C_{n+2} \end{bmatrix}$, where the symbols have their usual meanings. The f(n) is

divisible by

(a)
$$n^2 + n + 1$$
 (b) $(n + 1)!$

(b)
$$(n + 1)$$

Q 52. Eliminating a, b, c from
$$x = \frac{a}{b-c}$$
, $y = \frac{b}{c-a}$, $z = \frac{c}{a-b}$ we get

(a)
$$\begin{vmatrix} 1 & -x & x \\ 1 & -y & y \\ 1 & -z & z \end{vmatrix} = 0$$

(b)
$$\begin{vmatrix} 1 & -x & x \\ 1 & 1 & -y \\ 1 & z & 1 \end{vmatrix} = 0$$

(a)
$$\begin{vmatrix} 1 & -x & x \\ 1 & -y & y \\ 1 & -z & z \end{vmatrix} = 0$$
 (b) $\begin{vmatrix} 1 & -x & x \\ 1 & 1 & -y \\ 1 & z & 1 \end{vmatrix} = 0$ (c) $\begin{vmatrix} 1 & -x & x \\ y & 1 & -y \\ -z & z & 1 \end{vmatrix} = 0$ (d) none of these

Q 53. The system of equations

$$6x + 5y + \lambda z = 0$$

$$3x - y + 4z = 0$$

$$x + 2y - 3z = 0$$

has

- (a) only a trivial solution for $\lambda \in R$
- (b) exactly one nontrivial solution for some real λ
- (c) infinite number of nontrivial solutions for one value of λ
- (d) only one solution for $\lambda \neq -5$

Answers

Matrices

Choose the most appropriate option (a, b, c or d).

Q 1. If
$$A = \begin{bmatrix} 1 & -2 & 4 \\ 2 & 3 & 2 \\ 3 & 1 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & -2 & 4 \\ 1 & 3 & 2 \\ -1 & 1 & 5 \end{bmatrix}$ then $A + B$ is

- (a) $\begin{bmatrix} 1 & -2 & 4 \\ 3 & 3 & 2 \\ 2 & 1 & 5 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & -2 & 8 \\ 3 & 3 & 4 \\ 2 & 1 & 10 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & -4 & 8 \\ 3 & 6 & 4 \\ 2 & 2 & 10 \end{bmatrix}$ (d) none of these

Q 2. If
$$A^2 = 8A + kI$$
 where $A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$ then k is

(a)7

Q 3. The matrix
$$\begin{bmatrix} \lambda & 7 & -2 \\ 4 & 1 & 3 \\ 2 & -1 & 2 \end{bmatrix}$$
 is a singular matrix if λ is

- (a) $\frac{2}{5}$

(c) -5

(d) none of these

Q 4. If the matrix
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 then A^2 is

(a)
$$\begin{bmatrix} a^2 & b^2 \\ c^2 & d^2 \end{bmatrix}$$

(a)
$$\begin{bmatrix} a^2 & b^2 \\ c^2 & d^2 \end{bmatrix}$$
 (b) $\begin{bmatrix} a^2 + bc & ab + bd \\ ac + dc & bc + d^2 \end{bmatrix}$ (c) nonexistent

(d) none of these

Q 5. If
$$A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$ such that $A^2 = B$ then α is

(a) 1

(c)4

(d) none of these

Q 6. If
$$\begin{bmatrix} 2 & -3 \\ 1 & \lambda \end{bmatrix} \times \begin{bmatrix} 1 & 5 & \mu \\ 0 & 2 & -3 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 1 \\ 1 & -1 & 13 \end{bmatrix}$$
 then

(a) $\lambda = 3$, $\mu = 4$

- (b) $\lambda = 4$, $\mu = -3$
- (c) no real values of λ , μ are possible
- (d) none of these

Q 7. If AB = 0 where
$$A = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix}$$
 and $B = \begin{bmatrix} \cos^2 \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin^2 \phi \end{bmatrix}$ then $|\theta - \phi|$ is equal to

(b)
$$\frac{\pi}{2}$$

(c)
$$\frac{\pi}{4}$$

Q 8. If
$$A = \begin{bmatrix} 0 & -4 & 1 \\ 2 & \lambda & -3 \\ 1 & 2 & -1 \end{bmatrix}$$
 then A^{-1} exists (i.e., A is invertible) if

(a)
$$\lambda \neq 4$$

(b)
$$\lambda \neq 8$$

(c)
$$\lambda = 4$$

(d) none of these

Q 9. The reciprocal matrix of
$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 1 & 2 & 1 \end{bmatrix}$$
 is

(a)
$$\begin{bmatrix} -3 & -4 & 2 \\ -1 & 1 & -1 \\ 1 & 2 & -1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 3 & 4 & -2 \\ 1 & -1 & 1 \\ -1 & -2 & 1 \end{bmatrix}$$

(a)
$$\begin{bmatrix} -3 & -4 & 2 \\ -1 & 1 & -1 \\ 1 & 2 & -1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 3 & 4 & -2 \\ 1 & -1 & 1 \\ -1 & -2 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} -3 & -1 & 1 \\ -4 & 1 & 2 \\ 2 & -1 & -1 \end{bmatrix}$ (d) none of these

Q 10. If
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{bmatrix}$$
 then the value of |adj A| is equal to

(d) none of these

Q 11. If
$$A = \begin{bmatrix} \cos \alpha & -\cos \alpha & 0 \\ \cos \alpha & \sin \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 then A^{-1} is equal to

(d) none of these

Q 12. If
$$A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}$$
 the A^2 is equal to

(d) none of these

Q 13. If
$$f(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 then $f(x + y)$ is equal to

(a)
$$f(x) + f(y)$$

(a)
$$f(x) + f(y)$$
 (b) $f(x) - f(y)$

(d) none of these

$$Q \ 14. \quad \text{If} \ A = \begin{bmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{bmatrix}, B = \begin{bmatrix} \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \\ \omega & \omega^2 & 1 \end{bmatrix} \text{and} \ C = \begin{bmatrix} 1 \\ \omega \\ \omega^2 \end{bmatrix} \text{where } \omega \text{ is the complex cube root of 1 then (A }$$

+ B)C is equal to

(a)
$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$

(c)
$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Q 15. If
$$A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} a^2 & ab & ac \\ ba & b^2 & bc \\ ca & cb & c^2 \end{bmatrix}$ then AB is equal to

(a) 0

(b) I

(c) 2I

(d) none of these

Q 16. If A be a matrix such that
$$A \times \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$$
 then A is

- (a) $\begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix}$ (b) $\begin{bmatrix} -1 & 1 \\ 4 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$
- (d) none of these

Q 17. The rank of the matrix
$$\begin{bmatrix} -5 & 3 & 2 \\ 3 & 2 & -5 \\ 4 & -1 & -3 \end{bmatrix}$$
 is

(a) 3

(b) 2

(c) 1

(d) none of these

Q 18. The rank of the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ \lambda & 2 & 4 \\ 2 & -3 & 1 \end{bmatrix}$$
 is 3 if

- (a) $\lambda \neq \frac{18}{11}$
- (c) $\lambda = -\frac{18}{11}$
- (d) none of these

Q 19. The rank of the matrix
$$\begin{bmatrix} 4 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 5 & 0 & 0 & 1 \end{bmatrix}$$
 is

(a) 4

(b) 3

(c) 2

(d) none of these

Q 20. The system of equations

$$x + y + z = 2$$

$$2x - y + 3z = 5$$

$$x - 2y - z + 1 = 0$$

written in matrix form is

(a)
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & 3 \\ 1 & -2 & -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & 3 \\ 1 & -2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ -5 \\ 1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & 3 \\ 1 & -2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$$

(d) none of these

Q 21. If
$$\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0$$
 then x is

(a) 2

(b) -2

(c) 14

(d) none of these

Q 22. If
$$\begin{bmatrix} x+y & y \\ 2x & x-y \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
 then x.y is equal to

(a) -5

(b) 5

(c) 4

(d) 6

Choose the correct options. One or more options may be correct.

Q 23.
$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & -1 & 4 \\ 3 & 4 & 1 \end{bmatrix}$$
 is a

- (a) rectangular matrix (b) singular matrix
- (c) square matrix
- (d) nonsingular matrix

Q 24. If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \\ 0 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 5 & 4 & 6 \\ 4 & 1 & 2 \\ -5 & -1 & 1 \end{bmatrix}$ then

- (a) A + B exists
- (b) AB exists
- (c) BA exists
- (d) none of these

Q 25. If
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 then

- (a) $A^3 = 9A$ (b) $A^3 = 27A$ (c) $A + A = A^2$ (d) A^{-1} does not exist

Answers